
Supplementary Material for Accidental Light Probes

Hong-Xing Yu1 Samir Agarwala1 Charles Herrmann2 Richard Szeliski2 Noah Snavely2

Jiajun Wu1 Deqing Sun2

1Stanford University 2Google Research

Abstract

In this supplementary document, (A) we provide more details in reconstructing our accidental light probes (ALPs), (B)
include more qualitative results in both indoor and outdoor scenes, and (C) show additional evaluations including comparison
to existing inverse rendering methods in a casual capture setup, additional ALPs for a controlled analysis of shape and
reflectance, and evaluation on difficult object poses. In our supplementary video, we provide an overview of our work.

A. Technical Details

Losses in accidental light probe reconstruction. Recall that for ALP reconstruction, our optimization problem is given by:

min
π,α,f

∑
{Icapture}

L
(
Irender(π, α, f |Li, S), Icapture

)
, (1)

where π and α are the 6D pose and size to fit the scanned shape S to multi-view camera coordinate frame, f is the material
parameterized by spatially-varying albedo A and roughness r, {Icapture} denotes a set of captured multi-view images, Irender
denotes the rendered image, and Li denotes the recorded incidental lighting. The loss function L consists of three parts:

L = LRGB +Lmask +β1 Lalbedo-reg +β2 Lroughness-reg, (2)

where LRGB and Lmask are pixel-wise losses for RGB images and masks, and Lalbedo-reg and Lroughness-reg denotes regularization
for the material. For LRGB, we follow [4] to use L1 loss in tone-mapped image space with sRGB transfer function [8] for
stable optimization. We use L2 loss for Lmask. Similar to [4, 10], the material regularization for smoothness is defined as

Lalbedo-reg = ∥A(x)−A(x+∆x)∥1, Lroughness-reg = ∥r(x)− r(x+∆x)∥1 + ∥r(x)∥1, (3)

where x denotes a point at the object surface, and ∆x denotes a small deviation sampled from a normal distribution. We also
encourage small roughness values since any inaccuracy (which can come from the violation of distant lighting assumption,
inaccuracy of surface normals due to quantization in mesh triangles, etc.) in computing specular highlight reflection results in
blurred highlights and thus higher estimation of roughness of the surface. As for shading, we also adopt the differentiable
split-sum approximation [4] to shade the multi-view rendered images due to performance reason.
Implementation details. For ALP reconstruction, we use Adam [5] optimizer with default momentum parameters and learning
rate 0.03. We optimize for 1500 iterations with 8 images per batch. We set β1 = 0.03. The training images are cropped to be
square and the resolution is 1000. We use β2 = 0.01 for all soda cans and 0.1 for others. For joint pose-lighting estimation,
we adopt a two-stage strategy. In the first stage, we use Adam optimizer with learning rate 0.1 for 500 iterations. We set the
pose regularization weight λ1 = 1 and the lighting regularization weight λ2 = 0.01. For Monte Carlo estimation, we use 1
sample for shading with a cross-bilateral denoiser [7]. The small sample count is due to limited GPU memory. We found that
the denoiser stabilizes the joint optimization but it introduces stripe-like artifacts in the environment map. Thus, in the second
stage, we fix the 6D pose and keep optimizing the environment map for additional 1000 iterations using 200000 rays per
iteration without the denoiser. We continuously sample sub-pixels (which provides continuously-changing surface normals) to
remove alias in the environment map.



StyleLight

Deep 
Parametric

Garon
et al

GT

Diet 
Pepsi

Diet
Coke

Sprite

Cap

Cleaner

Input Mirror Shiny Diffuse Input Mirror Shiny Diffuse Input Mirror Shiny Diffuse

Figure 1. Additional qualitative results for outdoor scenes, comparing to StyleLight [9], Deep Parametric [2] and Garon et al [3].

B. Additional Qualitative Results
We show qualitative results of our lighting estimation and relighting in Figure 1 and Figure 2 for outdoor and indoor

scenes respectively. Similar to the observation in the main paper, our results are visually more consistent with the groundtruth
relighted images compared to the baseline methods.

C. Additional Evaluations

Controlled experiments on reflectance and shapes of ALPs. To explore how different reflectance properties and shapes
of ALPs affect lighting estimation, we include four additional ALPs for controlled comparisons. We show these additional
ALPs for controlled experiments in Fig. 3. Regarding reflectance, the estimated environment maps are more accurate and
detailed when the ALPs are less rough, e.g., comparing Ornaments 1 and 2, while the albedo has little effect, e.g., comparing
Ornaments 1 and 3. Regarding shape, although the golden bird statue is highly non-convex, it provides comparable results to
the golden Ornament 1 which is a nearly perfect sphere, showing that our method can tolerate such shape variation.
Dealing with extreme poses. In our joint light-pose optimization, we address local minima by multi-initialization of orientation
(currently 4) and keeping the one with the highest re-rendering PSNR. We show various poses for the Diet Pepsi can in Fig. 4.
This combination of sampling-based and gradient-based methods leads to robust pose estimates, even for unusual poses like an
upside-down can.
Note on the ring. We note that we also tried using a ring as an ALP. However, it is very challenging to have correct
segmentation of the ring using the automatic segmentation algorithm [1], possibly due to its small size and highly concave
shape. For the ring example we show in the main paper, we manually segment it and then use our method to estimate lighting.
ALP reconstruction in casual capture setup. Beside the light box capture setup, we also compare the ALP reconstruction
using a casual setup, where a Diet Coke can is placed on a table (with some textured newspaper around it for solving camera
poses) and we take multi-view photos for it. Example images of the casual setup photos are shown in Figure 5. We extend the
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Figure 2. Additional qualitative results for indoor scenes. We compare our approach to StyleLight [9], Deep Parametric [2] and Garon et
al [3] on relighting mirror, shiny and diffuse spheres.

Casual multi-view Lightbox setup
Method Mirror Shiny Diffuse Mirror Shiny Diffuse

Nvdiffrec [6] 12.23 10.99 9.14 6.99 5.06 3.59
Nvdiffrecmc [4] 8.76 7.37 4.71 6.55 4.60 3.84
ALP (Ours) 6.49 5.48 4.89 5.46 3.67 2.80

Table 1. Evaluation on our ALP model acquisition for a diet coke can under two different capture settings: casual multi-view images and our
lightbox setup. We use the same lighting estimation approach for compared methods and report average angular error across all test scenes.

lightbox setup comparison from the main paper in Table 1 to include quantitative evaluation for lighting estimation using the
reconstructed ALPs in the casual capture setup. In both setups, our reconstruction yields better lighting estimation.

While in the main paper we show a comparison for existing state-of-the-art inverse rendering methods [4, 6] and our
reconstruction pipeline in a nutshell, here we show a more complete comparison of the reconstruction using the existing
methods and ours under both the casual setup and the light box setup in Figure 6. We can see that our reconstruction method is
consistently better under both casual setup and light box setup. We also note that our reconstruction using the casual setup
still has the environment baked into the material textures. This is probably because the distant lighting assumption breaks
due to near-field reflections. The incidental lighting on the ALP surface is spatially-varying instead of constant. Thus, on the
bottom of the coke can, the actual incidental surface light field (where the reflected rays are yellowish) is different from the
environment map, leading to yellowish texture baking.
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Figure 3. ALPs of different shapes (a golden Bird Statue vs. golden Ornament 1) and reflectance (Ornaments: 1 and 2 are different in
roughness; 1 and 3 are different in albedo).

 Cropped 
Input

 Overlay

Figure 4. Estimated poses under varying pose conditions. The second row shows re-renderings (which have black backgrounds) overlayed
on top of input images. They match accurately.

Figure 5. Casual multi-view images for ALP reconstruction. We compare our ALP reconstruction pipeline to [4, 6] using casually captured
multi-view images of a diet coke can in contrast to using our lightbox setup that is referenced in the main paper.
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Figure 6. Qualitative comparison of the materials and geometry of a Diet Coke can using our method and [4, 6] in both setups.
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