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Our supplementary material consists of:

A. Supplementary video.

B. Implementation details.

C. Additional experiment results.

A Supplementary Video

In the supplementary video, we first give an overview of our method, Object-centric Neural Scattering
Functions (OSFs), and explain how it learns cumulative radiance transfer. Then, we show demos of free-
viewpoint relighting on both opaque and translucent objects. Finally, we show how we compose multiple
OSFs into a new scene configuration.

B Implementation Details

We use a multilayer perception (MLP) with rectified linear activations. The predicted density σ is view-
invariant, while the cumulative radiance transfer function ρ is dependent on the incoming and outgoing light
directions. We use an eight-layer MLP with 256 channels to predict σ, and a four-layer MLP with 128
channels to predict ρ. Following NeRF (Mildenhall et al., 2020), we similarly apply positional encoding to
our inputs and employ a hierarchical sampling procedure to recover higher quality appearance and geometry
of learned objects. For positional encoding, we use W = 10 to encode the position x and W = 4 to encode
the incoming and outgoing directions (ωlight, ωout), where W is the highest frequency level. To avoid ρ from
saturating in training, we adopt a scaled sigmoid (Brock et al., 2016) defined as S′(ρ) = δ(S(ρ) − 0.5) + 0.5
with δ = 1.2. We use a batch size of 2048 rays.

For synthetic datasets, we sample Nc = 64 coarse samples and Nf = 128 fine samples per ray. For real
world datasets, we sample Nc = 64 coarse samples and Nf = 64 fine samples per ray. We use the Adam
optimizer (Kingma & Ba, 2014) with a learning rate of 0.001, β1 = 0.9, β2 = 0.999, and ϵ = 10−7.

C Additional Experiments

C.1 Ablation study on translucency

We study how well OSFs can model different levels of translucency. To evaluate this, we use the Stanford
Bunny model with different translucency intensities including {0, 0.1, 0.3, 0.6, 1}, where 0 means opaque and
1 means highly translucent with strong subsurface scattering. For each of these 5 objects, we generate images
with identical camera poses and light directions. We show results in Figure S1 and Table S1. From the figure,
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Figure S1: Qualitative examples of ablation study on translucency.

SSS PSNR↑ SSIM↑ LPIPS↓
0 30.01 0.89 0.067
0.1 34.55 0.94 0.030
0.3 37.46 0.97 0.011
0.6 39.63 0.98 0.006
1 40.91 0.99 0.004

Table S1: Ablation study on modeling different lev-
els of translucency. The leftmost column shows the
intensity of subsurface scattering.

PSNR↑ SSIM↑ LPIPS↓
One light 34.26 0.92 0.034
Two lights 32.40 0.93 0.027

Table S2: Free viewpoint relighting with two distant
light sources.

we see that OSFs can model all objects well, especially translucent objects that have smoother shadows. A
major reason is that the appearances of translucent objects vary smoothly w.r.t. changing view angles and
lighting directions, and thus a learned neural implicit model is suitable to represent them. Opaque concave
objects can have harsh self-shadows which are very high-frequency signals that are difficult for neural models
to represent and interpolate (Rahaman et al., 2019).

C.2 Free viewpoint relighting with two light sources

Since OSFs learn radiance transfer functions, they support relighting with multiple distant lights due to the
linearity of radiance. To demonstrate this, we evaluate OSFs on free-viewpoint relighting with two light
sources, while all models are trained with only one light source. We use synthetic opaque objects. For each
object, we generate a new test set with the same camera poses and light directions as the original one-light
test set, but we add an additional light source. We show results in Figure S2 and in Table S2. From the
figure, we observe that the visual results are faithful for both settings. From the table, we validate this via
numerical metrics. We note that the widely-used environment maps are essentially collections of distant
lights.
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Figure S2: Qualitative examples of relighting with two distant light sources.
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