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Abstract
While attributes have been widely used for person
re-identification (Re-ID) which aims at matching
the same person images across disjoint camera
views, they are used either as extra features or
for performing multi-task learning to assist the
image-image matching task. However, how to
find a set of person images according to a given
attribute description, which is very practical in
many surveillance applications, remains a rarely
investigated cross-modality matching problem
in person Re-ID. In this work, we present this
challenge and leverage adversarial learning to for-
mulate the attribute-image cross-modality person
Re-ID model. By imposing a semantic consistency
constraint across modalities as a regularization,
the adversarial learning enables to generate image-
analogous concepts of query attributes for match-
ing the corresponding images at both global level
and semantic ID level. We conducted extensive
experiments on three attribute datasets and demon-
strated that the regularized adversarial modelling is
so far the most effective method for the attribute-
image cross-modality person Re-ID problem.

1 Introduction
Pedestrian attributes, e.g., age, gender and dressing, are
searchable semantic elements to describe a person. In many
scenarios we need to search person images in surveillance
environment according to specific attribute descriptions
provided by users, as depicted in Figure 1. We refer to
this problem as the attribute-image person re-identification
(attribute-image Re-ID). This task is significant in finding
missing people with tens of thousands of surveillance
cameras equipped in modern metropolises. Compared
with conventional image-based Re-ID [Zhao et al., 2014;
Yang et al., 2016], attribute-image Re-ID has the advantage
that its query is much easier to be obtained, e.g., it is more
practical to search for criminal suspects when only verbal
testimony about the suspects’ appearances is given.

∗Corresponding author, email: wszheng@ieee.org

Figure 1: The attribute-image Re-ID problem. The query is an at-
tribute vector labeled by users, and the corresponding target person
images that are matched with the query are retrieved.

Despite the great significance, the attribute-image Re-ID
is still a very open problem and has been rarely investigated
before. While a lot of attribute person Re-ID models [Lin et
al., 2017; Layne et al., 2012a; Su et al., 2016; Layne et al.,
2012b; 2014b; 2014a; Su et al., 2015a] have been developed
recently, they are mainly used either for multi-task learning or
for providing extra features so as to enhance the performance
of image-image person Re-ID model. The most intuitive so-
lution to attribute-image Re-ID might be to predict attributes
for each person image, and search within the predicted at-
tributes [Siddiquie et al., 2011; Vaquero et al., 2009; Scheirer
et al., 2012]. If we can reliably recognize the attributes of
each pedestrian image, this might be the best way to find the
person corresponding to the query attributes. However, rec-
ognizing attributes from a person image is still an open is-
sue, as pedestrian images from surveillance environment of-
ten suffer from low resolution, pose variations and illumina-
tion changes. The problem of imperfect recognition limits the
intuitive methods in bridging the gap between the two modal-
ities (attribute and image), which are heterogeneous from
each other. In addition, very often in a large-scale scenario,
the predicted attributes from two pedestrians are different but
very similar, leading to a very small inter-class distance in the
predicted attribute space. Therefore, the imperfect prediction
deteriorate the reliability of these existing models.

In this paper, we propose an adversarial attribute-image
Re-ID framework. Intuitively, when we hold some attribute
description in mind, e.g., “dressed in red”, we generate an
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obscure and vague imagination on how a person dressed in
red may look like, which we refer to as a concept. Once
a concrete image is given, our vision system automatically
processes the low-level features (e.g., color and edge) to
obtain some perceptions, and then try to judge whether the
perceptions and the concept are consistent with each other.

More formally, the goal of our adversarial attribute-image
Re-ID framework is to learn a semantically discriminative
joint space, which is regarded as a concept space (Figure
2), for generative adversarial architecture to generate some
concepts that are very similar to the concepts extracted from
raw person images. However, the generic adversarial archi-
tecture is still hard to fit the match between two extremely
large discrepant modalities (attribute and image). For this
problem, we impose a semantic consistency regularization
across modalities in order to regularize the adversarial
architecture, enhancing the learned joint space to build a
bridge between the two modalities.

In a word, our framework learns a semantically discrim-
inative structure of low-level person images, and generate
a correspondingly aligned image-analogous concept for
high-level attribute towards image concept. By the proposed
strategy, directly estimating the attributes of a person image
is averted, and the problems of imperfect prediction and low
semantic discriminability are naturally solved, because we
learn a semantically discriminative joint space, rather than
predicting and matching attributes.

We have conducted experiments on three large-scale
benchmark datasets, namely Duke Attribute [Lin et al.,
2017], Market Attribute [Lin et al., 2017] and PETA [Deng
et al., 2014], to validate our model. By our study, some inter-
esting findings are:
(1) Compared with other related cross-modality models, we
find the regularized adversarial learning framework is so far
most effective for solving the attribute-image Re-ID problem.
(2) For achieving better cross-modality matching between at-
tribute and person image, it is more effective to use adver-
sarial model to generate image-analogous concept and get it
matched with image concept rather than doing this in reverse.
(3) The semantic consistency as regularization on adversarial
learning is important for the attribute-image Re-ID.

2 Related Works
2.1 Attribute-based Re-ID
While pedestrian attributes in most research are side infor-
mation or mid-level representation to improve conventional
image-image Re-ID tasks [Lin et al., 2017; Layne et al.,
2012a; Su et al., 2016; Layne et al., 2012b; 2014b; 2014a;
Su et al., 2015a; 2015b; 2018], only a few work [Vaquero et
al., 2009] has discussed attribute-image Re-ID problem. The
work in [Vaquero et al., 2009] is to form attribute-attribute
matching. However, despite the improvement on perfor-
mance achieved by attribute prediction methods [Li et al.,
2015], directly retrieving people according to their predicted
attributes is still challenging, because the attribute prediction
methods are still not robust to the cross-view condition
changes like different lighting conditions and viewpoints.

In this work, for the first time, we present extensive investi-
gation on the attribute-image Re-ID problem under an adver-
sarial framework. Rather than directly predicting attributes of
an image, we cast the cross-view attribute-image matching as
cross-modality matching by an adversarial learning problem.

2.2 Cross-modality Retrieval
Our work is related to cross-modality content search,
which aims to bridge the gap between different modali-
ties [Hotelling, 1936; Mineiro and Karampatziakis, 2014;
Andrew et al., 2013; Kiros et al., 2014]. The most
traditional and practical solution to this task is Canon-
ical Correlation Analysis (CCA) [Hotelling, 1936;
Mineiro and Karampatziakis, 2014; Andrew et al.,
2013], which projects two modalities into a common
space that maximizes their correlation. Ngiam et al. and
Feng et al. also applied autoencoder-based methods to
model the cross-modality correlation [Ngiam et al., 2011;
Feng et al., 2014], and Wei et al. proposed a deep semantic
matching method to address the cross-modality retrieval
problem with respect to samples annotated with one or
multiple labels[Wei et al., 2017]. Recently, A. Eisenschtat
and L. Wolf have designed a novel model of two tied
pipelines that maximize the projection correlation using
an Euclidean loss, which achieves state of the art results
in some datasets [Eisenschtat and Wolf, 2017]. Two most
related works to ours are proposed in [S.Li et al., 2017; Li et
al., 2017], which retrieve pedestrian images using language
descriptions. Compared with this setting, our attribute-image
Re-ID has its own strength in embedding more pre-defined
attribute descriptions for obtaining better performance.

2.3 Distribution Alignment Methods
The adversarial model employed in this work is in line
with the GAN methods[Eric et al., 2017; Reed et al., 2016;
Goodfellow et al., 2014], which has its strength in distribu-
tion alignment by a two player min-max game. As different
modalities follow different distributions, our cross-modality
attribute-image Re-ID problem is also related to the dis-
tribution alignment problem. For performing distribution
alignment, there are other techniques called domain adapta-
tion techniques [Tzeng et al., 2014; Long and Wang, 2015;
Ganin and Lempitsky, 2015]. In domain adaptation, to align
the distribution of data from two different domains, several
works [Tzeng et al., 2014; Long and Wang, 2015] apply
MMD-based loss, which minimize the norm of difference
between means of the two distributions. Different from these
methods, the deep Correlation Alignment(CORAL) [Sun and
Saenko, 2016] method proposed to match both the mean and
covariance of the two distributions. Our work is different
from these methods as our framework not only bridges the
gap between the two largely discrepant modalities, but also
keeps the semantic consistency across them.

3 Attribute-image Person Re-ID
Given an attribute descriptionAi, attribute-image Re-ID aims
at re-identifying the matched pedestrian images Ii from an
image database I = {Ii}Ni=1 captured under real surveillance
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Figure 2: The structure of our network. It consists of two branches:
the image branch (top blue branch) learns to extract semantic con-
cepts from images, and the attribute branch (bottom green branch)
learns to generate image analogous concepts from attributes. Dash
lines represent the gradient flow of the three objectives that we pro-
pose. See Sec. 3.3 for details about the network architecture.

environment, where N is the size of I. Since different
person images could have the same attribute description,
the attribute-image Re-ID uses Semantic ID (i.e., attribute
description) to group person images. That is, people with the
same attribute description are of the same semantic ID.

The goal of our method is to learn two mappings ΦI
and ΦA that respectively map person images and high-level
semantic attributes into a joint discriminative space, which
could be regarded as the concept space as mentioned. That
is, CIi = ΦI(Ii) and CAi = ΦA(Ai), where CIi and CAi are
the mid-level concept that is generated from the image Ii and
attribute Ai, respectively. To achieve this, we form an image
embedding network by CNN and an attribute-embedding
network by a deep fully connected network. We parameterize
our model by Θ, and obtain Θ by optimizing a concept gen-
eration objective Lconcept. Given training pairs of images and
attributes (Ii, Ai), the optimization problem is formulated as

min
Θ

Lconcept =
1

N

N∑
i=1

lconcept(ΦI(Ii),ΦA(Ai)). (1)

In this paper, we design lconcept as a combination of sev-
eral loss terms, each of which formulates a specific aspect of
consideration to jointly formulate our problem. The first con-
sideration is that the concepts we extract from the low-level
noisy person images should be semantically discriminative.
We formulate it by image concept extraction loss lI . The
second consideration is that image-analogous concepts CA
generated from attributes and image concepts CI should be
homogeneous. Inspired by the powerful ability of generative
adversary networks to close the gap between heterogeneous
distributions, we propose to embed an adversarial learning
strategy into our model. This is modelled by a concept gener-
ating objective lCG, which aims to generate concepts not only
discriminative but also homogeneous with concepts extracted
from images. Therefore, we have

lconcept = lI + lCG. (2)

In the following, we describe each of them in detail.

3.1 Image Concept Extraction
Our image concept extraction loss lI is based on softmax
classification on the image concepts ΦI(I). Since our
objective is to learn semantically discriminative concepts that
could distinguish different attributes rather than specific per-
sons, we re-assign semantic IDs yi for any person image Ii
according to its attributes rather than real person IDs, which
means different people with the same attributes have the
same semantic ID. We define the image concept extraction
loss as a softmax classification objective on semantic IDs.
Denoting ΨI as the classifier and I as the input image, the
image concept extraction loss is the negative log likelihood
of predicted scores ΨI(ΦI(I)):

lI =
∑
i

− log ΨI(ΦI(Ii))yIi , (3)

where Ii is the ith input image, yIi is the semantic ID of Ii
and ΨI(ΦI(Ii))k is the kth element of ΨI(ΦI(Ii)).

3.2 Semantic-preserving Image-analogous
Concept Generation

Image-analogous Concept Generation. We regard ΦA as a
generative process, just like the process of people generating
an imagination from an attribute description. As the seman-
tically discriminative latent concepts could be extracted from
images, they can also provide information to learn the image-
analogous concepts ΦA(A) for attributes as a guideline.

Mathematically, the generated image-analogous concepts
should follow the same distribution as image concepts, i.e.,
PI(C) = PA(C), where C denotes a concept in the joint
concept space of ΦI(I) and ΦA(A) and PI , PA denote
the distribution of image concepts and image-analogous
concepts, respectively. We learn a function P̂I to ap-
proximate image concept distribution PI , and force the
image-analogous concepts ΦA(A) to follow distribtion P̂I . It
can be achieved by an adversarial training process of GAN,
in which discriminator D is regarded as P̂I and the generator
G is regarded as image-analogous concept generator ΦA.

In the adversary training process, we design a network
structure (see Sec. 3.3) and train our concept generator ΦA
with a goal of fooling a skillful concept discriminator D that
is trained to distinguish the image-analogous concept from
the image concept, so that the generated image-analogous
concept is aligned with the image concept. We design the
discriminator network D with parameters θD and denote the
parameters of ΦA as θG. The adversarial min-max problem
is formulated as

min
θG

max
θD

V (D,G) =EI∼pI [logD(ΦI(I))]+

EA∼pA [log(1−D(ΦA(A)))].
(4)

The above optimization problem is solved by iteratively
optimizing θD and θG. Therefore, the objective can be
decomposed into two loss terms lGadv and lDadv , which are
for training the concept generator ΦA and the discriminator
D, respectively. Then the whole objective during adversary
training ladv could be formed by:

ladv = λDl
D
adv + λGl

G
adv, (5)

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1102



where

lGadv =− EA∼pA [logD(ΦA(A))],

lDadv =− EI∼pI [logD(ΦI(I))]

− EA∼pA [log(1−D(ΦA(A)))].

Semantic Consistency Constraint. The adversarial learn-
ing pattern ladv is important for generator ΦA to generate
image-analogous concept with the same distribution of image
concept ΦI(I). Furthermore, we should generate meaningful
concepts preserving the semantic discriminability of the
attribute modality, i.e., P sidI (C) = P sidA (C), where P sidI

and P sidA denote the distributions of image concepts and
image-analogous concepts of semantic ID sid. If we analyze
the image concept extraction loss lI in Equation (3) indepen-
dently, ΨI can be regarded as a function to approximate a
set of distributions P sidI (C) for each semantic ID sid. With
the assumption that the generated image-analogous concepts
should be in the same concept space as image concepts, ΨI

is shared by image concept extraction and image-analogous
concept generation, so as to guarantee identical distribution
of two modalities in semantic ID level. We integrate a
semantic consistency constraint lsc using the same classifier
for image concept ΨI :

lsc =
∑
i

− log ΨI(ΦA(Ai))yAi
, (6)

where Ai is the ith input attribute, yAi
is the semantic ID

of Ai and ΨI(ΦA(Ai))k is the kth element of ΨI(ΦA(Ai)).
Thus the overall concept generating objective for attributes
lCG becomes the sum of ladv and lsc:

lCG = ladv + lsc. (7)

By this way, we encourage our generative model to generate
a more homogeneous image-analogous concept space,
while at the same time correlate image-analogous concepts
with semantically matched image concepts by maintaining
semantic discriminability in the learned space.

3.3 The Network Architecture
Our network architecture is shown in Figure 2. Firstly, the
concept generator is particularly designed to have multiple
fully connected layers in order to obtain enough capacity
to generate image-analogous concepts which are highly
heterogeneous from the input attribute. Details are shown in
Table 1. Secondly, our concept discriminator is also a com-
bination of fully connected layers, each followed by batch
normalization and leaky reLU, except for the output layer,
which is processed by the Sigmoid non-linearity. Finally, the
concept extractor is obtained by removing the last Softmax
classification layer of Resnet-50 and adding a 128-D fully
connected layer. We regard the feature produced by the FC
layer as the image concept. Note that the dimension of the
last layer in the concept generator is also set to 128.

As introduced above, we impose the semantic consistency
constraint on attribute and thus we pass image-analogous
concepts into the same Semantic ID classifier as that for

Structure Size
fc1 attributeSize× 128
BatchNormalization 128
ReLU 128
fc2 128 × 256
BatchNormalization 256
ReLU 256
fc3 256 × 512
BatchNormalization 512
ReLU 512
fc4 512 × embeddingSize
Tanh embeddingSize

Table 1: The structure of our network’ attribute part. Fc means fully
connected layers. 128 is set to be the embedding size in our work.

image concepts. At the inference stage, we rank the gallery
pedestrian image concepts CI according to their cosine
distances to the query image-analogous concepts CA in the
latent embedding space.
Implementation Details. We first pre-trained our image
network for 100 epochs using the semantic ID, with an adam
optimizer [Kingma and Ba, 2015] with learning rate 0.01,
momentum 0.9 and weight decay 5e-4. After that, we jointly
train the whole network. We set λG in Eq. (2) as 0.001, and
λD as 0.5, which will be discussed in Section 4.2. The total
epoch was set to 300. During training, we set the learning
rate of the attribute branch to 0.01, and set the learning rate
of the image branch to 0.001 because it had been pre-trained.
The batch size of training is 128 and the setting of optimizer
is the same as that of pre-training. Hyper-parameters are
fixed in comparisons across all the datasets.

4 Experiments
4.1 Datasets and Settings
Datasets. We evaluate our approach and compare with
related methods on three benchmark datasets, including
Duke Attribute [Lin et al., 2017], Market Attribute [Lin et
al., 2017], and PETA [Deng et al., 2014]. We tried to follow
the setting in literatures. The Duke Attribute dataset contains
16522 images for training, and 19889 images for testing.
Each person has 23 attributes. We labelled the images using
semantic IDs according to their attributes. As a result, we
have 300 semantic IDs for training and 387 semantic IDs for
testing. Similar to Duke Attribute, the Market Attribute also
has 27 attributes to describe a person, with 12141 images
and 508 semantic IDs in the training set, and 15631 images
and 484 semantic IDs in the test set. For PETA dataset, each
person has 65 attributes (61 binary and 4 multi-valued). We
used 10500 images with 1500 semantic IDs for training, and
1500 images with 200 semantic IDs for testing.
Evaluation Metrics. We computed both Cumulative Match
Characteristic (CMC) and mean average precision (mAP) as
metrics to measure performances of the compared models.

4.2 Evaluation on the Proposed Model
Adversarial vs. Other Distribution Alignment Tech-
niques. For our attribute-image Re-ID, we employ the
adversarial technique to make the image-analogous concepts
generated from attribute aligned with the image concepts.
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Method Market Duke PETA
rank1 rank5 rank10 mAP rank1 rank5 rank10 mAP rank1 rank5 rank10 mAP

DeepCCAE [Wang et al., 2015] 8.12 23.97 34.55 9.72 33.28 59.35 67.64 14.95 14.24 22.09 29.94 14.45
DeepCCA [Andrew et al., 2013] 29.94 50.70 58.14 17.47 36.71 58.79 65.11 13.53 14.44 20.77 26.31 11.49
2WayNet [Eisenschtat and Wolf, 2017] 11.29 24.38 31.47 7.76 25.24 39.88 45.92 10.19 23.73 38.53 41.93 15.38
DeepMAR [Li et al., 2015] 13.15 24.87 32.90 8.86 36.60 57.70 67.00 14.34 17.80 25.59 31.06 12.67
CMCE [Li et al., 2017] 35.04 50.99 56.47 22.80 39.75 56.39 62.79 15.40 31.72 39.18 48.35 26.23
ours w/o adv 33.83 48.17 53.48 17.82 39.30 55.88 62.50 15.17 36.34 48.48 53.03 25.35
ours w/o sc 2.08 4.80 4.80 1.00 5.26 9.37 10.87 1.56 3.43 4.15 4.15 5.80
ours w/o adv+MMD 34.15 47.96 57.20 18.90 41.77 62.32 68.61 14.23 39.31 48.28 54.88 31.54
ours w/o adv+DeepCoral 36.56 47.61 55.92 20.08 46.09 61.02 68.15 17.10 35.62 48.65 53.75 27.58
ours 40.26 49.21 58.61 20.67 46.60 59.64 69.07 15.67 39.00 53.62 62.20 27.86

Table 2: Comparison results on the three benchmark datasets. Performances are measured by the rank1, rank5 and rank10 matching accuracy
of the cumulative matching curve, as well as mAP. The best performances are indicated in red and the second indicated in blue.

While CCA is also an option and will be discussed when
comparing our method with DCCA later, we examine
whether other widely used alignment methods can work
for our problem. We consider the MMD objective, which
minimize difference between means of two distributions,
and DeepCoral [Sun and Saenko, 2016], which matches both
mean and covariance of two distributions, as traditional and
effective distribution alignment baselines. Since their original
models cannot be directly applied, we modify our model for
comparison, that is we compare with 1) our model without
the adversary learning but with an MMD objective(ours w/o
adv+MMD); 2) our model without the adversary learning
but with Coral objective(ours w/o adv+DeepCoral). We
also provide the baseline that adversarial learning is not
presented, denoted as “ours w/o adv”.

Compared with the model that does not use adversarial
learning (ours w/o adv), all the other baselines including our
adversary method perform clearly better. Among all, the ad-
versary learning framework generally performs better (with
the best and second best performance) as shown in Table 2.

With vs. Without Semantic Consistency Constraint. In
our framework, we tested our performance when the seman-
tic consistency constraint is not used, denoted as “ours w/o
sc”. As reported in Table 2, without semantic consistency
constraint the performance drops sharply. This is because
although the distributions of two modalities are aligned,
the corresponding pair is not correctly matched. Hence,
the semantic consistency constraint actually regularizes
the adversarial learning to avert this problem. As shown,
with semantic consistency constraint but without adversarial
learning (i.e., “ours w/o adv”) our model clearly performed
worse than our full model. All the observations suggest the
generic adversarial model itself does not directly fit the task
of aligning two modalities which are highly discrepant, but
the regularized one by semantic consistency constraint does.

A2Img vs. Img2A. In our framework, we currently use
the adversarial loss to align the generated image-analogous
concept of attribute towards image concept, we call such
case generation from attributes to image (A2Img). We now
provide comparative results on generation from image to at-
triburtes (Img2A). As reported in Table 3, we find that Img2A
is also effective, which even outperforms A2Img on the PETA
dataset. But on larger datasets Market and Duke, A2Img
performs better. The reason may be that the distribution of

Method Market Duke PETA
Ours (i.e. A2Img) 40.3 46.6 39.0

Img2A (reverse of the proposed) 36.0 43.7 43.6
Real Images 8.13 20.01 19.85

Table 3: The rank1 matching accuracy of some variants of our
model. “A2Img” denotes our model which generates concepts from
attributes. “Img2A” does the reverse of “A2Img”. “Real Images” de-
notes the model which generates images (rather than concepts) for
attributes.

semantic IDs is much sparser than the distribution of images.
Thus, estimating the manifold of images from the training
data is more reliable than estimating that of attributes. But in
PETA, the number of images is relatively small while seman-
tic IDs are relatively abundant compared with the other two
datasets. Moreover, PETA also has more complicated scener-
ies and larger number of attribute descriptions, which are
more challenging for images to learn discriminative concepts.
Thus learning generated attribute-analogous concepts and
aligning with attribute concepts provides more discriminative
information, and Img2A performs better on PETA.
Generation in Concept Space or in Image Space. What if
our model generates images instead of concepts, according to
the attributes? We study how the generated image-analogous
pattern (whether concepts or images) affects the effectiveness
of our model. To this end, we use the conditional GAN
in [Reed et al., 2016] to generate fake image, which have
aligned structure with real images, from our semantic
attributes and a random noise input. We have modified some
input dimension and added some convolution and deconvo-
lution layers in [Reed et al., 2016] to fit our setting. Firstly
we train the generative models for 200 epochs, and then the
classification loss is added for another training of 200 epochs.

We find the retrieval performance is worse than our
original model, as shown in Table 3. This is probably
because generating the whole pedestrian image introduces
some noise, which is harmful in discriminative tasks like
attribute-image Re-ID. In contrast, generating concepts
which are relatively “clean” can avoid introducing unnecce-
sary noise. Thus, generating image-analogous concepts in
the discriminative concept space is more effective.

4.3 Comparison with Related Work
Comparing with Attribute Prediction Method. As men-
tioned above, an intuitive method of attribute-image Re-ID
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is to predict attributes from person images and perform the
matching between predicted attributes and query attributes.
We compare our model with a classical attribute recogni-
tion model DeepMAR [Li et al., 2015], which formulates
attribute recognition as a muti-task learning problem and
acts as an off-the-shelf attribute predictor in our experiment.
As shown in Table 2, our model outperforms DeepMAR,
and it is because DeepMAR still suffers from the problem
of indiscriminative predicted attributes. Different from
DeepMAR, we choose to learn latent representations as the
bridge between the two modalities, where we successfully
avert the problem caused by attribute prediction and learn
more discriminative concepts using adversary training.
Comparing with Cross Modality Retrieval Models. Since
our problem is essentially a cross-modality retrieval problem,
we compare our model with the typical and commonly used
Deep canonical correlation analysis (DCCA) [Andrew et al.,
2013], Deep canonically correlated autoencoders (DCCAE)
[Wang et al., 2015] and a state-of-the-art model 2WayNet
[Eisenschtat and Wolf, 2017]. Deep CCA applies the CCA
objective in deep neural networks in order to maximize the
correlation between two different modalities. DCCAE[Wang
et al., 2015] jointly models the cross-modality correlation and
reconstruction information in the joint space learning process.
2WayNet is a recently proposed two-pipeline model which
maximizes sample correlations.

We show the comparative results in Table 2. From Table
2, we can observe that our model outperforms all the cross
modality retrieval baselines on all three datasets by large
margins. This is partially because our model not only learns
to close the gap between the two modalities in the joint
concept space, but also keeps the semantic consistency of the
extracted and generated concepts.

In addition, we compare our model with the most related
one, i.e., the cross modality cross entropy (CMCE) model [Li
et al., 2017], which achieved a state-of-the-art result in text-
based person retrieval. We train the CMCE model with se-
mantic ID for fair comparison. The results in Table 2 show
that our model is comparable (on Market) or more effective
(on Duke and PETA) for the attribute-image Re-ID problem.

4.4 Further Evaluations
Finally we present some further evaluations of our model. We
first evaluate the effects of two important hyper-parameters
λD and λG. We present the results on the Duke Attribute
dataset in Figure 3. The trends are similar on other datasets,
and therefore Figure 3 might be useful for determining the
hyper-parameters on other datasets.

Secondly, we conduct qualitative evaluations on our
proposed model. Figure 4 shows examples of top-10 ranked
images according to a query attribute description from the
Market Attribute dataset. We find that fine-grained features
of pedestrian images (e.g. stride of a backpack) are the main
reasons that cause mistakes in our baseline (see ours w/o
adv in the second row of Figure 4). But with the adversarial
objective, our model could get an intuition and generate the
concept of what a person wearing a backpack would look like,
and then concentrate more on possible fine-grained features.

Figure 3: Results of experiment on the trade-off parameters λG and
λD . We firstly set λD to 1 and change the value of λG, and get the
results in the left image. Then we chose our best λG=0.001 in our
experiments and change λD on the right.

Figure 4: Qualitative example in Market Attribute Dataset. The first
row shows the results of our proposed method and the second are
about a baseline. To save space, we only list 6 attribute items among
all the 27 ones in Market Attribute in the third row. The inaccurately
retrieved samples are marked by red rectangles in the figure.

5 Conclusion
The attribute-image Re-ID problem is a cross-modal match-
ing problem that is realistic in practice, and it differs notably
from the previous attribute-based person Re-ID problem that
is still essentially an image-image Re-ID problem. In this
work, we have identified its challenge through the experi-
ments on three datasets. We have shown that an adversarial
framework regularized by a semantic consistency constraint
is so far the most effective way to solve the attribute-image
Re-ID problem. Also, by our learning, we find that under the
regularized adversarial learning framework, it is more useful
to learn image-analogous concept from inquired attributes
and make it aligned with the corresponding real image’s
concept, as compared with its reverse.
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