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Abstract
In this work, we present an interesting attempt
on mixture generation: absorbing different image
concepts (e.g., content and style) from different
domains and thus generating a new domain with
learned concepts. In particular, we propose a mix-
ture generative adversarial network (MIXGAN).
MIXGAN learns concepts of content and style from
two domains respectively, and thus can join them
for mixture generation in a new domain, i.e., gen-
erating images with content from one domain and
style from another. MIXGAN overcomes the lim-
itation of current GAN-based models which ei-
ther generate new images in the same domain as
they observed in training stage, or require off-the-
shelf content templates for transferring or transla-
tion. Extensive experimental results demonstrate
the effectiveness of MIXGAN as compared to re-
lated state-of-the-art GAN-based models.

1 Introduction
When you are looking at a red T-shirt in eBay, you could
easily imagine how you would look like when you wear it:
you know well the shape of your body, you have an image
of this red T-shirt in your mind, and thus you can wear it in
your imaginary world. However, can a learning machine do
a job like this? This means that the machine should have the
ability to learn from different domains (people and T-shirts,
in the running example) and extract some specific concepts
from them, respectively (people’s body shapes and T-shirts’
color style). Then, it is expected to join the specific kinds of
concepts and thereby generate a new domain (imagination on
wearing the T-shirt). In realistic applications, this generation
strategy might be more desirable in some scenarios other than
the conventional generation strategy where only one training
domain exists and the generated domain is expected to be the
same as the existing one. We show another example in Figure
1. Here we aim to generate images in a new domain (i.e.
colorful bags), given the content of one domain (the shape of
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Figure 1: Mixture generation and conventional generation. Mixture
generation requires absorbing concepts from different domains. In
particular, here we learn content concept from the bags and style
concept from the shoes for mixture generation. In contrast, conven-
tional generation does not go beyond the available training domain.

the bags) and style of another domain (the color style of the
shoes). By this way, it helps bring new ideas and provides
visualizations for the bag designers who only have some raw
ideas about designing bags of different color styles from the
existing ones.

We recognize such problems as the mixture generation
problems, where we need to jointly absorb different kinds of
concepts for generating a new domain beyond the available
ones. 1 Unfortunately, as illustrated in the right part in Fig-
ure 1, existing GAN-based generative methods are restricted
to generate new samples similar to the ones from training
domains [Goodfellow et al., 2014; Makhzani et al., 2016;
Odena et al., 2017; Berthelot et al., 2017]. On the other
hand, although the style transfer [Gatys et al., 2016; John-
son et al., 2016; Ulyanov et al., 2016] and image-to-image
translation [Hertzmann et al., 2001; Sangkloy et al., 2017;
Karacan et al., 2016] models can translate an existing image
to another style, they are also restricted in that they require
off-the-shelf content templates, and thus cannot deal with the
problems requiring going beyond the available content tem-
plates (e.g., designing new shapes as well as styles of bags).
Therefore, the mixture generation problem still remains an
open issue.

To explicitly learn different types of concepts from differ-
ent domains, in this work we focus on learning content (e.g.,

1Here we interpret the mixture of concepts in a simplified
way. For better understanding we refer the readers to the ma-
terials about conceptual blending [Fauconnier and Turner, 2008;
Goguen and Harrell, 2010].
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shape of bags) from one domain, and style (e.g., color style
of shoes) from another. The main idea is that, in the gener-
ation process, the style concept “joins” the content concept,
so that a generator can not only keep the content concept in
mind, but also absorb the style concept to generate images
of a new domain. To this end, we develop a framework in
which the content concept is represented as hierarchical fea-
tures, while the style concept is learned and embedded in a
hierarchical decoder. During generation, the hierarchical fea-
tures (with content concept) progressively passes through the
decoder (with style concept), and meanwhile the decoder “re-
leases” the style concept. Thereby, the style concept joins the
content concept and finally the decoder produces an image
based on them. As an analogy which might not be very pre-
cise but helps to understand, one can imagine barbecuing. We
have pork and fish at hand (content), put them on the grill (de-
coder), spread oil on them at an early stage and sprinkle spice
right before enjoying them (progressively absorbing the style
concept). Also note that in the very beginning, we pay certain
amount of money (noise for generation) to buy the pork and
spice.

More specifically, we propose a mixture generator model
in our framework for mixture generation. The mixture gen-
erator consists of a content decoder and a mixture decoder.
The content decoder learns from images of the content do-
main, and thus provides the mixture decoder with rich hierar-
chical features. These features, from mid-level to low-level,
contain corresponding content concept and they are then pro-
gressively fed to the mixture decoder. The mixture decoder
is designed to not only learn the style concept from the style
domain, but also learn how to join both kinds of concepts for
mixture generator.

With the mixture generator, we form a mixture genera-
tive adversarial network (MIXGAN). We evaluate our MIX-
GAN on several tasks. The experimental results show that
our model can learn to generate images in a new domain,
e.g., generating hand-written colorful digits provided that
our model only observes black-and-white hand-written dig-
its [LeCun et al., 2010] and colorful type-script ones [Netzer
et al., 2011]. The main contributions are as follows:

1. We recognize the mixture generation problem that re-
quires jointly absorbing concepts from different domains for
generation, and propose to address it by joining style concept
and content concept during generation.

2. We propose an unsupervised framework as well as a
novel model, i.e., mixture generator, to join the style and con-
tent concept for mixture generation. Specifically, the learned
content concept is represented as hierarchical features and the
style concept is embedded in a mixture decoder. During gen-
eration, the decoder “releases” the style concept which can
thus be absorbed by the content concept.

3. We show that our model can learn to generate images
with content of one domain and style of another in several
mixture generation tasks.

2 Related Work
GAN-based generative models. Generative Adversarial
Nets (GAN) [Goodfellow et al., 2014] is a popular frame-

work for generation. It is like a two-player game, where
a discriminator learns to distinguish real images from fake
ones, while a generator tries its best to fool the discrimina-
tor. It is trained in an adversarial learning pattern, where the
discriminator and generator iteratively improves themselves
to beat the other one. Recently, lots of GAN-based models
have largely promoted many generation fields, e.g., image
generation [Goodfellow et al., 2014; Radford et al., 2016],
image editing [Zhu et al., 2016], and variational inference
[Makhzani et al., 2016], interpretable representation learning
[Salimans et al., 2016; Liu and Tuzel, 2016],etc.

Our work is closely related to GANs, as our framework
adopts the adversarial learning pattern for training. On the
other hand, our model is different from these models in that
our model is designed for mixture generation, and therefore
can generate a new domain. In contrast, these models are de-
signed for conventional generation problems that do not re-
quire generating samples beyond training domains.

Style Transfer and Image-to-Image Translation. Our
work is also closely related to the style transfer models [Gatys
et al., 2016; Johnson et al., 2016; Ulyanov et al., 2016;
Yoo et al., 2016] and image-to-image translation models
[Hertzmann et al., 2001; Sangkloy et al., 2017; Karacan et
al., 2016]. Style transfer models aim to learn how to trans-
fer the style of a source image to a target image [Gatys
et al., 2016], while the image-to-image translation models
learn a translation mapping from images of one domain to
those of another domain [Isola et al., 2017]. Typically the
translation models learn the mapping from one style to an-
other [Isola et al., 2017], e.g., translating a photo to a paint-
ing. Some image-to-image translation models adopt condi-
tional generative adversarial network to learn a mapping from
paired images, e.g. translating sketches to photos [Isola et
al., 2017; Eigen and Fergus, 2015; Hertzmann et al., 2001;
Johnson et al., 2016; Laffont et al., 2014; Long et al., 2015;
Shih et al., 2013; Wang and Gupta, 2016; Xie and Tu, 2015;
Zhang et al., 2016]. Recently, unpaired image transla-
tion also receives much research efforts [Zhu et al., 2017;
Kim et al., 2017; Yi et al., 2017; Taigman et al., 2017;
Liu et al., 2017; Dong et al., 2017; Choi et al., 2017].

Our framework is related to them since our model and these
models both need to learn style from a specific domain. How-
ever, the translation models translate images in one domain
to another domain and the style transfer models learn how
to transfer style in a pair of images, whereas our framework
aims to learn concepts from different domains for mixture
generation.

3 Framework

In this section we present our framework. In the following,
we will first give an overview of our framework, and then
demonstrate how to learn content concept from a specific do-
main. Based on the content concept we develop the mixture
generator which jointly learns the style concept and learns to
join both kinds of concepts for mixture generation.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2213



Figure 2: The structure of our mixture generative adversarial network (MIXGAN). The core of our framework is the mixture generator G,
which consists of a content decoder Gc and a mixture decoder Gm. The content decoder connects the content generation network (upper
part in the figure) and the mixture generation network (mixture generator with a patch discriminator Dp) for joint learning, while the mixture
decoder absorbs content concept of x and style concept of y for mixture generation. (Best viewed in color.)

3.1 Overview
We propose an adversarial framework for jointly learning two
kinds of concepts from two domains, respectively. The gen-
eral idea is to introduce a jointly learned mixture generator G
to absorb the two concepts. The mixture generator consists
of a content decoder Gc which learns the content concept,
and a mixture decoder Gm which jointly learns the style con-
cept as well as how to join them for mixture generation. The
content decoder Gc is learned within an adversarial autoen-
coder together with an encoder En and a discriminator Dz .
Gc provides the mixture decoder Gm with rich hierarchical
information on the content concept, so as to connect the con-
tent generation and the style generation. Gm is jointly learned
with Gc (for learning content concept) and a patch discrim-
inator Dp (for learning style concept). Thus, Gm learns to
join these two kinds of concepts. By this way, the two con-
cepts are mutually learned and connected within the mixture
generator G for mixture generation.

In summary, our full objective for our framework is formu-
lated as:

min
En,Gc,Gm

max
Dz,Dp

L(En, Gc, Gm, Dz, Dp), (1)

where

L(En, Gc, Gm, Dz, Dp)

=Lcontent(En, Gc, Dz) + Lmixture(Gc, Gm, Dp). (2)

In the above formulation, Lcontent corresponds to learning
the content concept and Lmixture corresponds to the joint
learning for mixture generator.

We refer to our framework as MIXture GAN (MIXGAN).
In the following, we elaborate each of them.

3.2 Learning Content
We consider content as containing general spacial relation-
ship of pixels, but without suffcient details in an image.

Hence, we assume that content can be encoded by low-
dimensional and abstract latent variables, and thus we model
learning the content by an autoencoder structure with a bottle-
neck. On the other hand, as our objective is to learn the con-
tent concept for generation purpose, we would further like to
force the latent variables to follow a prior, so that we can eas-
ily sample from it. Such a consideration leads us to an adver-
sarial autoencoder (AAE) structure [Makhzani et al., 2016],
as shown in the upper left part in Figure 2. A discriminator
Dz aims to distinguish the noise z (sampled from a gaussian
distributionN ) from the latent variables, and the encoder En

has an extra task: to foolish the discriminator by forcing the
latent variables follow the same gaussian distribution N .

Formally, letLcontent be the loss function for learning con-
tent concept, and let Gc be the content decoder in the AAE
structure. We have our objective in learning content concept:

min
En,Gc

max
Dz

Lcontent(En, Gc, Dz)

=Ladversarial(En, Dz) + λLreconstruction(En, Gc)

=Ez∼N [(Dz(z)− 1)2] + Ex∼pdata(x)[(Dz(En(x)))
2]

+λEx∼pdata(x)[‖ x−Gc(En(x)) ‖1], (3)

where x is an image from the content domain and λ controls
the relative importance of the reconstruction loss over the ad-
versarial loss. The L1 reconstruction loss encourages the en-
coder to capture the low frequencies accurately but less high-
frequency details than original images [Zhu et al., 2017]. For
acquiring more stable learning, we use a least square form of
the adversarial loss [Mao et al., 2017] instead of the negative
log likelihood in the original GAN [Goodfellow et al., 2014].

3.3 Mixture Generator
Now that we have learned some content concept in the AAE
structure, we can propose our mixture generator G. We show
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the architecture in the right of Figure 2. The mixture gen-
erator contains a content decoder Gc and a mixture decoder
Gm. The content decoder Gc is also a part of AAE and thus
has the ability to reproduce content concept by simply receiv-
ing noise sampled fromN . The content decoder Gc provides
the mixture decoderGm with rich hierarchical features which
carry content concept of different levels. The mixture decoder
Gm progressively takes these features as inputs (so it obtains
content concept) and learns the style concept from outside
(detailed in the next paragraph). The style concept is kept
in the mixture decoder Gm’s architecture, and therefore the
style concept can be “released” and join the content concept
while Gm is processing the hierarchical features. As a result,
the mixture generator G jointly learns both kinds of concepts
and can generate images from a new domain.

Regarding learning the style concept, we consider style as
information related to high-frequency details and local struc-
tures in local areas, e.g., color and sharpness. Its structural
information can thus be independent across different patches
of the whole image. Hence, we model learning the style by
independently observing and learning from small patches of
images. To this end, we employ a patch discriminator Dp

which looks at small patches of some candidate images and
aims to distinguish the ones of the style domain from those
generated by our mixture generator [Isola et al., 2017]. The
patch discriminator Dp is illustrated in the lower left in Fig-
ure 2. Here, Dp is like a teacher passing style concept to a
student, i.e., the mixture generator G, who absorbs the style
concept in the mixture decoder Gm.

Formally, our objective of the mixture generator is:

min
Gc,Gm

max
Dp

Lmixture(G,Dp) = Lmixture(Gc, Gm, Dp)

=Ey∼pdata(y)[((Dp(y)− 1)2] + Ez∼N [(Dp(G(z)))
2]. (4)

where y is an image from the style domain and z is the noise
sampled from the prior, i.e., gaussian distribution N .

3.4 Network Structure of the Mixture Generator
As shown in Figure 2, the content decoder consists of a block
of three fully connected layers which process the high-level
features, and a block of three convolutional layers which pro-
cess mid-level and low-level features. Similar to [Isola et al.,
2017], each of these layers is followed by a Batchnorm layer
and a ReLU activation. The structure of mixture decoder Gm

is almost identical to the convolutional block of the content
decoder Gc, as Gm only captures mid-level and low-level lo-
cal style concept, only except that it has one more convolu-
tional layer to fully learn from the low-level features.

Implementation details. As the joint learning of the mix-
ture decoder Gm is based on the hierarchical features pro-
vided by the content decoder Gc. This is a two-step train-
ing process. We need to first train Gc with images of
the content domain. Therefore, we first optimize Eq. (3)
in an adversarial learning pattern [Makhzani et al., 2016;
Goodfellow et al., 2014]. During our training, we use Adam
[Kingma and Ba, 2014] solver with learning rate 0.0002 and
β1 = 0.5, β2 = 0.999. It reaches convergence typically

Figure 3: Samples in four training datasets.

Figure 4: The first four rows: samples in MNIST (content domain)
and SVHN (style domain). The last three rows: our results in mix-
ture generation.

within 100 epoches. Then, as Gc can already “reproduce”
the learned concept, we optimize Eq. (4) to train the mix-
ture generator G, also in an iterative adversarial learning pat-
tern. We use the same Adam solver and training typically
converges within 300 epoches. During inference stage, as the
latent variables space (ideally) follows the prior, we can sim-
ply sample from the prior N for mixture generator.

4 Experiments
We show experimental results on three aspects. Firstly we
show that MIXGAN can achieve our goal, i.e., mixture gen-
eration. Then we show that in mixture generator, the content
decoder and the mixture decoder learn content concept and
style concept, respectively. Finally, we present comparative
results with other related generative models to show that our
framework performs better in mixture generation.

4.1 Settings
For evaluation of our framework as well as for comparison,
we design two groups of experiments, with different content
domains and style domains.

The first group focuses on digits. We take hand-written
digits from the MNIST dataset [LeCun et al., 2010] and type-
script digits from the SVHN dataset [Netzer et al., 2011]. For
hand-written digits, the content refers to the relatively wild
shapes, in contrast to the relatively uniform shapes of type-
script digits. The style refers to their color schemes, where
hand-written digits are black-and-white (BW) and type-script
digits are colorful. We show some examples in the first two
rows in Figure 3.

The other group focuses on a more difficult task. We aim
to learn content and style from bags and shoes, respectively,
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Figure 5: The first four rows: samples in SVHN (content domain)
and MNIST (style domain). The last three rows: our results in mix-
ture generation.

Figure 6: The first four rows: samples in grayscale bags (content
domain) and shoes (style domain). The last three rows: our results
in mixture generation.

and in reverse. These images are available from [Isola et al.,
2017]. The content refers to the distinct shapes of both of
them, and the style refers to the color style, as shown in the
last two rows in Figure 3.

Since we are targeting the mixture generation which
typically involves generating a new domain, there is no
groundtruth available for quantitative evaluation. Thus, ex-
cept visual results, we also design various proper methods
including human evaluations and quantitative evaluations for
evaluating our framework as well as comparing with other
methods.

4.2 MIXGAN for Mixture Generation
In this section we show the results of MIXGAN for mixture
generation. Successful mixture generation results account for
above 70% in every task, so mixture generation is a big proba-
bility event for MIXGAN (please refer to Sec. 4.4 in details).
Thus, we select successful samples to show the effectiveness
of MIXGAN.

Experiments on digits. Our first task of this experiment
group is to learn to generate images with content of MNIST,
i.e., handwritten digits, and style of SVHN, i.e., colorful style

Figure 7: The first four rows: samples in grayscale shoes (content
domain) and bags (style domain). The last three rows: our results in
mixture generation.

like SVHN. We show the results in Figure 4. We can see
from Figure 4 that MIXGAN can generate images containing
hand-written digits while with a color style of the type-script
ones. The generated domain is new as MIXGAN does not
observe any images that look like the generated ones. Similar
observations can be found in the mirror task, where the con-
tent is type-script digits and with BW color style. We show
the results in Figure 5.

Experiments on bags and shoes. Bags and shoes are a
more difficult domain than digits since the objects are dif-
ferent and they are of higher resolution (64 by 64) compared
to digits (32 by 32). We show in Figure 6 the experimental
results where the content is from the bags and the style from
shoes. Note that for better learning the content concept, we
first transform the images of bags to grayscale images. This
can be easily done and does not require considerable efforts.
We can observe from Figure 6 that, although the content and
style are from different objects with higher resolution, MIX-
GAN can learn to absorb different kinds of concepts from
them, and generate a new domain.

We also show the results in the mirror task in Figure 7. We
can see that MIXGAN can also learn content concept from
the shoes and style concept from the bags.

4.3 Component Evaluation for Mixture Generator
In this subsection, we evaluate how each component con-
tributes to the MIXGAN. Specifically, we evaluate the com-
ponents of the proposed mixture generator. Recall that in the
mixture generator (Figure 2), the content decoder serves to
learn the content concept, and the mixture decoder learns the
style concept as well as joins them for mixture generation.
Here we take two tasks from the two experiment groups (one
for each group) for example to illustrate the effects.

We visualize the intermediate results produced by the con-
tent decoder, i.e., Gc(z) where Gc is the content decoder and
z is noise. We show these results in the upper part of Figure 8.
We can see that the intermediate digits already have the hand-
written shapes, although without the desired color style. In

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2216



Figure 8: Left: results with MNIST (content domain) and SVHN
(style domain) as training datasets. Right: results with grayscale
bags (content domain) and shoes (style domain) as training datasets.
The intermediate results: the content decoder outputs in the first
three rows. The final results: the mixture generator outputs in the
last three rows. Corresponding pairs of samples share the same con-
tent in the lower and upper parts.

contrast, the mixture generator produces images with desired
color style, as shown in the lower part of Figure 8. Similar ob-
servation can be found on the bags. This observation verifies
that the content decoder can learn the content concept, while
the mixture decoder can learn the style concept and join them
for mixture generation.

Models AAE LSGAN CycleGAN MIXGAN
TASK1 3.47% ± 3.90% 2.82% ± 1.56% 2.54% ± 2.63% 85.63% ± 6.37%
TASK2 1.17% ± 1.64% 7.32% ± 5.33% 0.39% ± 0.72% 71.13% ± 7.53%
TASK3 1.95% ± 2.33% 0.25% ± 0.71% 0.00% ± 0.00% 86.17% ± 6.62%
TASK4 1.95% ± 1.62% 0.50% ± 0.92% 0.00% ± 0.00% 90.70% ± 4.67%

Table 1: Success rate evaluated by human annotators. Measured by
average rate ± std. Task 1: generating colorful handwritten digits
(training datasets: MNIST, SVHN). Task2: generating black-and-
white type-script digits (training datasets: MNIST, SVHN). Task3:
generating colorful bags (training datasets: grayscale bags and col-
orful shoes). Task4: generating colorful shoes (training datasets:
grayscale shoes and colorful bags).

Models AAE LSGAN CycleGAN MIXGAN
MNIST 22.47 ± 1.06 21.46 ± 0.30 48.98 ± 2.10 248.11 ± 1.88
SVHN 103.48 ± 1.34 102.17 ± 4.84 17.47 ± 0.78 251.96 ± 3.44

Table 2: MMD distances of the generated samples and the two train-
ing sets in Task 1: generating colorful handwritten digits (training
datasets: MNIST, SVHN). The MMD distances are computed using
the feature from the last hidden layer of the pretrained deep binary
classifier network.

4.4 Comparison to Related Models
Now we compare MIXGAN with several related generative
models by comprehensive visual and quantitative evaluation,
including GAN-based generation models LSGAN [Mao et
al., 2017], adversarial autoencoder (AAE) [Makhzani et al.,
2016] and a state-of-the-art image translation model cycle-
GAN [Zhu et al., 2017].

Visual results. From Figure 9 we can see that the conven-
tional generation models, i.e., AAE and LSGAN, can learn to
generate images within a specific domain, either BW hand-
written digits or colorful type-script ones. However, they
could not generate a new domain for mixture generation. We

Figure 9: Comparative experiment results. Training datasets: the
MNIST dataset and the SVHN dataset.

Figure 10: Visualization of the relationships between the generated
samples and the training samples in generating colorful hand-written
digits (Task 1 in Table 1). The red, yellow and grey points cor-
respond to samples from MNIST, SVHN and the generated ones,
respectively

can also observe that although cycleGAN can translate an
image of hand-written digit to another of type-script digit,
the content and style remain the same as in their original do-
mains, while MIXGAN can achieve the mixture generation.
In contrast, MIXGAN has specifically designed strategies to
learn content concept, style concept and how to join them, re-
spectively. Therefore, MIXGAN can learn different concepts
from the two domains for mixture generation (i.e., colorful
type-script digits).

To further explore the differences, we evaluate the mixture
generation by visualizing the distributions of both the training
samples and the generated samples using t-SNE [Maaten and
Hinton, 2008]. We show the comparative results in the task
of generating colorful hand-written digits in Figure 10 (cor-
responding to the Task 1 results in Table 1). We can see that
MIXGAN is able to generate samples belonging to a distri-
bution which is “between” the two training distributions. In
contrast, the compared models fail in this mixture generation
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Figure 11: Illustration of the criteria of judging successful mixture
generation by human annotators.

task. They only generate samples belonging to the original
training distributions.

Human evaluations. We organize 100 human annotators
to evaluate success rate of MIXGAN and the compared mod-
els in the mixture generation task. As our objective is mix-
ture generation, we define that a generated image is “success-
ful” if it can be recognized as in a new domain combining
the content and style from the two training domains, respec-
tively. Here the key criteria are recognizability and combina-
tion/mixture of content and style. For example, we show in
Figure 11 some typical successful and failed cases in the task
of combining the content of shoes and style of handbags. For
each of our evaluation tasks (4 in total), each human annotator
judges 200 samples generated by MIXGAN whether success-
ful or not. The same evaluation is performed on the compared
models, namely AAE, LSGAN and CycleGAN. We show the
comparative results in Table 1. The average success rate of
MIXGAN is above 70%, while the second best is always be-
low 10%.

Quantitative evaluations. Although we can intuitively rec-
ognize how well the models can achieve mixture generation
in a 2-D embedding in Figure 10, we further evaluate it quan-
titatively. To this end, we adopt the maximum mean discrep-
ancy (MMD) between the generated samples and the train-
ing samples. Smaller MMD distance suggests that the gen-
erated sample still belong to one of the original training dis-
tributions. But we note that, larger MMD distance between
the generated samples and training samples does not directly
suggest a good mixture generation performance (because it
can just fail to generate meaningful samples). Therefore,
this measure should be considered complementary to the hu-
man annotator success rate: higher success rate with a higher
MMD distance suggests better mixture generation.

To compute the MMD distance, we need to first of all de-
termine which training distribution a given sample is com-
pared with, because there are two distinct training distribu-
tions. To achieve this, we first assign each generated sample
to a “nearer” training set, and then compute the MMD dis-
tance between the samples and their corresponding training
set. We define “near” by training a deep binary classifier net-

work which is trained using the two training sets and produces
a probability that a sample is belonging to a specific training
set. Then we use this classifier to judge to which training set
each generated sample should be assign.

We show the comparative results in Table 2. Together with
Table 1, we can see that MIXGAN has higher success rate and
MMD distance, indicating the better performance in terms of
mixture generation.

In summary, as compared to AAE, LSGAN and cycle-
GAN, our MIXGAN model can learn to generate samples
belonging to a new domain with concepts absorbed from dif-
ferent domains.

5 Conclusion
We present our work on mixture generation, where we aim
to generate a new domain beyond the training ones. In par-
ticular, we develop MIXGAN to generate a new domain that
contains the content and style concepts extracted from two
different domains. The core of MIXGAN is the mixture gen-
erator, which jointly learns two kinds of concepts as well as
how to join them for mixture generation. Our experiments
have shown its successful applications as compared to the
sate-of-the-art GAN-based methods.
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