
Unsupervised Person Re-Identification by
Deep Asymmetric Metric Embedding

Hong-Xing Yu , Ancong Wu , and Wei-Shi Zheng

Abstract—Person re-identification (Re-ID) aims to match identities across non-overlapping camera views. Researchers have

proposed many supervised Re-ID models which require quantities of cross-view pairwise labelled data. This limits their scalabilities to

many applications where a large amount of data from multiple disjoint camera views is available but unlabelled. Although some

unsupervised Re-ID models have been proposed to address the scalability problem, they often suffer from the view-specific bias

problem which is caused by dramatic variances across different camera views, e.g., different illumination, viewpoints and occlusion.

The dramatic variances induce specific feature distortions in different camera views, which can be very disturbing in finding cross-view

discriminative information for Re-ID in the unsupervised scenarios, since no label information is available to help alleviate the bias. We

propose to explicitly address this problem by learning an unsupervised asymmetric distance metric based on cross-view clustering. The

asymmetric distance metric allows specific feature transformations for each camera view to tackle the specific feature distortions. We

then design a novel unsupervised loss function to embed the asymmetric metric into a deep neural network, and therefore develop a

novel unsupervised deep framework named the DEep Clustering-based AsymmetricMEtric Learning (DECAMEL). In such a way,

DECAMEL jointly learns the feature representation and the unsupervised asymmetric metric. DECAMEL learns a compact cross-view

cluster structure of Re-ID data, and thus help alleviate the view-specific bias and facilitate mining the potential cross-view discriminative

information for unsupervised Re-ID. Extensive experiments on seven benchmark datasets whose sizes span several orders show the

effectiveness of our framework.

Index Terms—Unsupervised person re-identification, unsupervised metric learning, unsupervised deep learning, cross-view clustering,

deep clustering

Ç

1 INTRODUCTION

ALONG with the extensive deployment of visual surveil-
lance networks, considerable visual surveillance data is

emerging everyday within the networks. A basic problem of
analyzing and exploiting the data is to find target persons
who had been previously observed like missing children and
suspects, also known as person re-identification (Re-ID) [1],
[2]. Typically, Re-ID focuses on pedestrian matching and
ranking acrossmultiple non-overlapping camera views.

Re-ID remains an open problem although it has received
increasing explorations in recent years, principally because of
dramatic intra-person appearance variation across views and
high inter-person similarity. They mainly focus on learning
robust and discriminative feature representations [3], [4], [5],

[6], [7], [8], [9], [10], [11], [12], [13] and distance metrics
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28]. Recently, deep learning has been adopted to
the Re-ID community and has achieved promising perform-
ances [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39],
[40]. They have contributed a lot to the Re-ID community.

However, supervised models are intrinsically limited
because they rely on a large amount of correctly labelled
cross-view training data, which is very expensive [41]. In
the context of Re-ID, this limitation is even pronounced
because (1) manual labelling may not be fully reliable
when a huge number of images to be checked across mul-
tiple camera views, and more importantly (2) the astro-
nomical cost of time and money is prohibitive to label the
overwhelming amount of data. In many scenarios, there
is a large amount of data available but unlabelled, so that
the supervised methods would be restricted or not
applicable.

To directly make full use of the cheap and valuable unla-
belled data, some efforts on unsupervised Re-ID have been
made [42], [43], [44], [45], [46], [47], [48], [49], [50], which typi-
cally learn general/universal feature projections for person
images from every camera view, but the performances are
still not satisfactory. One of the main reasons is that without
the supervision of cross-view pairwise labelled data, it is
very difficult for a universal feature projection to capture the
cross-view discriminative information under dramatic cross-
view person appearance variations caused by view-specific
conditions (Fig. 1a). For example, a person in white may
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appear wearing gray in one camera view where illumination
is darker, while he may appear snow-white in another view
where illumination is brighter. Without the pairwise supervi-
sion guidance, it is very hard for a universal feature projec-
tion to map such drastically different cross-view image
features of the same person to very close points in the sub-
space.More generally, the view-specific conditions introduce
the view-specific bias, i.e., some specific feature distortions in
different camera views, which can be very disturbing in find-
ing what is more distinguishable in matching people across
views. We show a toy example to illustrate this disturbing
effect in Fig. 1. In Fig. 1a, the color feature of a person’s
arm may be located in the central position of images from
Camera-1 since Camera-1 typically captures the profile of a
person, while the corresponding color feature may appear at
the boundary of images from Camera-2 since it captures the
back of the person. Thus, the view-specific feature distortion
can make the cross-view matching even harder as shown in
Fig. 1b. In particular, most existing unsupervised models
treat the samples from different views in the same manner,
and thus could suffer from the effect of the view-specific bias.

In this work, we propose to explicitly deal with the view-
specific bias problem in unsupervised Re-ID by formulating
it as an unsupervised asymmetric distance metric learning
problem. We briefly introduce the idea in the following.
Given a pair of sample feature representations xi and xj, a
conventionally learned distance metric between them is:

dlðxi; xjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞTMMðxi � xjÞ

q
¼ kUUTxi � UUTxjk2; (1)

whereMM ¼ UUUUT is a positive semi-definedmatrix, andUU is a
transformation matrix. Learning such a metric is equivalent
to finding a space “shared” by samples from each camera
view [51]. This shared space is found by projecting all sam-
ples with a view-generic universal transformation UU . How-
ever, different camera views may induce different feature
characteristics, e.g., the side-view of persons in Camera-1

versus the back-view in Camera-2 as shown in Fig. 1a. Intui-
tively, it is important to perform view-specific transforma-
tions for acquiring common features to match person images
across camera views (e.g., selecting the corresponding color
features at different locations of images from different
camera views). Therefore, it can be hard for a universal trans-
formation to implicitly tackle the view-specific feature dis-
tortions from different camera views, especially when we
lack label information to guide it. This motivates us to explic-
itly take the view-specific feature distortion into account.
Inspired by the supervised asymmetric distance model [3],
[28], we propose to embed the asymmetric metric learning
into our unsupervised Re-ID modelling, and thus consider
themodification of Eq. (1), i.e., the asymmetric form:

dlðfxi; vig; fxj; vjgÞ ¼ kUUT
vi
xi � UUT

vj
xjk2; (2)

where vi denotes which camera view the ith sample comes
from, and UUvi is the corresponding view-specific trans-
formation. Such an asymmetric metric allows specific trans-
formation for each view to tackle the view-specific feature
distortions.

Since no label information is provided to strictly distin-
guish every visually similar person in unsupervised Re-ID sce-
narios, we encourage the asymmetric metric to condense the
visually similar cross-view person image clusters, and thus bet-
ter distinguish them from other dissimilar clusters. With the
asymmetric metric in the clustering procedure, we can explic-
itly address the view-specific bias and learn a better cross-
view cluster structure of the Re-ID data in the shared space.

In the following, we refer to the clustering procedure
which uses an asymmetricmetric as the asymmetric metric clus-
tering. Based on the asymmetric metric clustering, we first
develop a linear metric learning model named Clustering-
basedAsymmetricMEtric Learning (CAMEL). CAMEL jointly
learns an asymmetric metric and a cluster separation. Then,
based on CAMEL, we further propose a novel unsupervised
deep framework named DEep CAMEL (DECAMEL), which

Fig. 1. Cause and effect of the view-specific bias. (a) The images from different camera views suffer from dramatic viewing condition variations
across camera views. Images in the same colored box belong to the same person. (b) The specific viewing conditions lead to the view-specific
feature distortions/bias, making unsupervised Re-ID more challenging. A visualization of the view-specific bias can be found in Fig. 3a. For example,
given a probe image (in blue box), the correct match falls to the third rank due to the view-specific bias. (c) If we can tackle the view-specific feature
distortion (i.e., alleviate the view-specific bias), we may reach a better cross-view matching performance. Further visualization and discussion can
be found in Figs. 3 and 4. (Best viewed in color).
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jointly learns the feature representation and the unsupervised
asymmetric metric end to end. DECAMEL can address the
sub-optimality due to the separation of feature and metric
learning. By learning a better cross-view cluster structure in
the shared space, DECAMEL attempts tomine the underlying
cross-view discriminative information to achieve a better
cross-viewmatching performance.

More specifically, DECAMEL consists of a feature extrac-
tor network and an asymmetric metric layer. We propose a
novel unsupervised loss function for the whole deep frame-
work. In the optimization of DECAMEL, the asymmetricmet-
ric layer is initialized by CAMEL, which can alleviate the
view-specific bias and learn a preliminary cross-view cluster
separation. Then, the asymmetricmetric is embedded into the
whole network by the joint learning. The term “embedded”
refers to the fact that, during the joint learning, the asymmet-
ric metric is back-propagated to the whole network, so that
finally the view-specific bias in the feature space is also allevi-
ated. This is empirically observed in Fig. 4. Through this joint
learning procedure, DECAMEL learns a compact cross-view
cluster structure of Re-ID data. And thereby, it attempts to
mine the potential cross-view discriminative information
which will be qualitatively illustrated in Section 4 and quanti-
tatively validated in Section 5.

In summary, our main contributions in this work are:
1) We formulate unsupervised Re-ID as a joint learning

problemwhich consists of learning the feature representation
and an asymmetric distance metric, together with a cluster
separation. To our best knowledge, this is the first work for-
mulating unsupervised Re-ID as a joint learning problem of
the feature and themetric.

2) We propose a novel unsupervised deep framework
named DECAMEL. Different from previous works in unsu-
pervisedRe-ID,DECAMEL jointly learns the feature represen-
tation and the unsupervised asymmetric metric. DECAMEL
can learn a compact cross-view clustering structure formining
underlying cross-view discriminative information. We also
propose a novel unsupervised asymmetric metric learning
model, i.e., CAMEL, for the metric initialization in DECA-
MEL. CAMEL allows to explicitly model the view-specific
conditions in unsupervised Re-ID [52], and thus the useful
information of the cross-view person appearance variations
can be exploited for the feature learning in DECAMEL.

3) For large-scale view-extendable scenarios, we develop a
method named View Clustering (VC) for better generalizabil-
ity and scalability. VCprovides a flexible control on the gener-
alizability versus ability to precisely model the view-specific
conditions. To evaluate our framework, we conduct extensive
experiments on seven size-varying benchmark datasets.
Experimental results show that our model outperforms the
state-of-the-art with noticeable margins, indicating that the
asymmetricmodelling is effective in unsupervised Re-ID.

2 RELATED WORK

2.1 Unsupervised Re-ID Models

While there are a lot of greatworks in supervisedRe-ID [3-40],
unsupervised Re-ID still remains under-studied. Existing
attempts in unsupervised Re-ID can be classified into two cat-
egories: feature representation learning [42], [43], [44], [45],
[46], [47] and dictionary learning [48], [49], [50].

Feature Representation Learning. This category of models
mainly focuses on designing or learning discriminative and
invariant features. Farenzena et al. [42] proposed to extract
features containing three complementary parts of human
appearance, including color, spatial arrangement of colors
and texture patches. Cheng et al. [43] proposed to exploit the
part-to-part correspondence. They evaluate the modified
HSV characterization for each part and found the maximally
stable color regions. Zhao et al. [44] proposed to exploit
salience information by building dense correspondence and
unsupervised salience learning. Wang et al. [45] proposed to
localize person foreground saliency and remove busy back-
ground clutters. Lisanti et al. [46] proposed to extract the
weighted histogram of overlapping stripes (WHOS) feature,
and then applied the Iterative Re-Weighted Sparse Ranking
(ISR) algorithm to generate the ranked list of gallery individ-
uals. Wang et al. [47] proposed a CCA-based model to learn
a feature subspace where within-view similar persons are
distant from each other and cross-view similar persons are
close to each other. Recently, Fan et al. [53] attempted to learn
feature representationwith a deep clustering network.

Dictionary Learning. Dictionary learning aims to learn a
dictionary with its atoms corresponding to some semantic
elements. The learned dictionary will be used to produce the
new features which minimize the reconstruction error.
Kodirov et al. [48] proposed to formulate unsupervised
Re-ID as a sparse dictionary learning problem. To regularize
the learned dictionary, they learned it with graph Laplacian
regularization, and iteratively updated the graph Laplacian
matrix. Then they took a further step [50]. They propose to
introduce an l1-norm graph Laplacian to jointly learn the
graph and the dictionary, resulting in alleviation of the
effects of data outliers [50]. Peng et al. [49] proposed to learn
a dictionary by unsupervised multi-task learning. Different
from [48] and [50], the learned dictionary consists of task-
shared, task-specific and unique components.

Our model is very different from them in that: (1) Ours
explicitly addresses the view-specific bias by learning an
asymmetric metric, i.e., learning view-specific transforma-
tion for each camera view. Note that the RKSL [47] is based
onCanonical CorrelationAnalysis (CCA) and also learns dif-
ferent projections for different views. However, it does not
address the view-specific bias problem, because the CCA-
based model RKSL learns two projections separately and
inconsistently. RKSL focuses on the correlations of cross-
view samples by maximizing the correlation coefficients. In
the context of unsupervised learning (given no cross-view
labelled pairs), not like ours, RKSL is not able to discover the
cross-view cluster structure and thus not suitable to mine the
potential discriminative information across views. In addi-
tion, no inherent consistency between two specific feature
projections is considered, while our model preserves cross-
view consistency by learning an asymmetric metric under a
cross-view consistency regularization. (2) Ours can jointly
learn the feature representation and the asymmetric metric
end to end.

This work is based on our preliminary work which pre-
sented CAMEL [52]. In addition to giving a more detailed
description and analysis of the proposed linear model
CAMEL, themajor differences are as follow: (1)We present a
novel unsupervised deep frameworkDECAMEL. Compared
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to the linear metric learning model CAMEL, we propose the
novel loss function, architecture and learning algorithm,
which together enable DECAMEL to perform joint learning
of feature representation and metric in an unsupervised
way. By this means, compared to CAMEL, DECAMEL can
learn a more compact cross-view cluster structure, poten-
tially facilitating mining the underlying cross-view discrimi-
native information. (2) We propose the view clustering that
can significantly improve the generalizability and scalability
of DECAMEL. (3)We present more in-depth discussion and
analysis on the proposed framework, including a series of
visual results which show intuitively and progressively how
DECAMEL works. Moreover, we conduct more extensive
evaluations for comparisons and analysis.

2.2 Unsupervised Metric Learning

Although unsupervised metric learning has not been
exploited in Re-ID, there are a few works that exploit unsu-
pervised metric learning in other fields [54], [55], [56], [57]. Ye
et al. [54] proposed to jointly learn a metric and a clustering
separation for better clustering results. Qin et al. [55] pro-
posed to learn a metric based on regularized neighborhood
component analysis for clustering analysis. Cinbis et al. [56]
proposed to mine video information to find positive and neg-
ative pairs of faces, and thus learning a metric for video face
recognition. Jiang et al. [57] proposed a diffusion-based
approach to improve an input similarity metric for vision
tasks like image segmentation and clustering.

Specifically, our model is closely related to the Adaptive
Metric Learning (AML) [54]. AML learns a transformation
GG to project the training data x onto a low dimensional
space: x̂ ¼ GGTx. It minimizes the sum of squared error (SSE)
in the subspace:

SSE ¼
X
x̂

dMðx̂; ĉÞ2; (3)

where dM is the Mahalanobis distance, and ĉ denotes the
cluster centroid to which x̂ belongs.

Our model is different from AML in that ours performs
cross-view clustering and explicitly models the view-specific
bias in the context of unsupervised Re-ID. We propose to
alleviate the bias by learning an asymmetric metric. Further-
more, we propose to embed themetric learning into the deep
neural networks for a joint learning of feature representation
and the asymmetric metric.

The asymmetric modelling is also used in cross-modal
retrieval [58], [59], [60], where Canonical Correlation Analy-
sis [61] and Partial Least Squares (PLS) [62] based methods
are arguably the most popular. CCA and PLS also learn dif-
ferent projections for different modalities to induce a latent
space, where the correlation/covariance of pairwise cross-
modal training samples is maximized. However, they do not
address the view-specific bias problem in person Re-ID since
the projections are learned separately and inconsistently.
Moreover, they require sufficient pairwise labelled data is
required by these methods. There are also some works on
supervised deep metric learning [63], [64], [65], [66], [67],
[68]. However, these models require substantial labelled
data for training. In contrast, our model can directly learn
from unlabelled data and thus it is free from requiring large
amount of expensive labelled data.

2.3 Unsupervised Deep Clustering Embedding

Ourmodel is also related to the unsupervised deep clustering
embedding technique [69], [70], [71]. Xie et al. [69] proposed
to jointly learn cluster membership and deep representation
by minimizing the KL divergence between original data dis-
tribution and a target distribution. Yang et al. [70] proposed
to jointly learn image clusters and deep representation using
a convolutional neural network. Wang et al. [71] proposed to
learn a task-specific deep architecture based on sparse coding
for clustering.

DECAMEL is different from all these models in that it
joins unsupervised asymmetric metric learning with cross-
view clustering, which is specifically designed for cross-
view matching in Re-ID, while others use standard symmet-
ric metrics in clustering.

3 APPROACH

In this section, we progressively develop our unsupervised
Re-ID framework, i.e., theDEep Clustering-based Asymmet-
ric MEtric Learning (DECAMEL). Specifically, our frame-
work first learns an initial asymmetric metric by a linear
unsupervised model (CAMEL) and then embeds the metric
into a deep network by jointly learning feature and metric.
These two steps are based on the asymmetric metric cluster-
ing, so we first introduce the asymmetric metric clustering
and develop the linear model. Then, we introduce a novel
loss function for the unsupervised deep joint learning. We
show an overview of our framework in Fig. 2.

3.1 Unsupervised Asymmetric Metric Learning

Now let us dive into the details and develop the model step
by step. Under a general unsupervised Re-ID setting, we
have V camera views. From each of them, we have collected
Nv ðv ¼ 1; . . . ; V Þ images, and thus we have N ¼PV

v¼1 Nv

unlabelled images for training. Here we assume that feature
representation for the training images are given, and the

training set is denoted as X ¼ fxi; vigNi¼1, where xi is the fea-
ture vector and vi denotes which camera view it comes
from. Note that in visual surveillance, the camera view
“label” vi is naturally available for each image, since its
straightforward to know by which camera an image is cap-
tured in a camera network. Here we follow a popular
assumption that during training and testing, the camera
views are the same [3, 5, 6, 8, 9, 11, 14, 15, 18-40, 44, 47-50].
We will also discuss a novel view-extendable setting in
Section 3.4.

We are looking for some transformations to map the data
into a shared space, where we can better separate the images
of different persons. A natural idea is to decrease the intra-
class (here, a class is a person) discrepancy and enlarge the
inter-class discrepancy. In an unsupervised scenario, how-
ever, we have no labelled data to strictly separate visually
similar persons. Therefore, we relax the original idea: we
focus on gathering similar person images together, and
thereby separating relatively dissimilar ones. We formulate
it by an objective like that of k-means clustering [72]:

min
UU;fckgKk¼1

fintra ¼ 1

N

XK
k¼1

X
i2Ck
kUUTxi � ckk2; (4)
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where UU is the view-generic universal feature transforma-
tion, K is the number of clusters, ck denotes the centroid of
the kth cluster and Ck ¼ fijUUTxi 2 kth clusterg.

However, clustering can be largely affected by the view-
specific bias when applied in the cross-view problems. In
Re-ID, the variances across camera views like different light-
ing conditions, human pose variations and occlusions [28]
can be very dramatic. They are disturbing or even dominat-
ing in searching the similar person images across views
during clustering procedure. To address this problem, we
learn specific transformations for each view rather than a
generic one, to explicitly take the view-specific feature dis-
tortion into account and to alleviate the view-specific bias.
As discussed in Eq. (2), the idea can be further formulated by

min
fUUvgVv¼1;fckgKk¼1

fintra ¼ 1

N

XK
k¼1

X
i2Ck
kUUT

vi
xi � ckk2

s:t: UUT
v SSvUUv ¼ II ðv ¼ 1; . . . ; V Þ;

(5)

where UUvi is the specific feature transformation for the vith
camera view, vi denotes which camera view xi comes from,
SSv ¼

P
xt :vt¼v xtx

T
t =Nv þ II is a covariance matrix, and II rep-

resents the identity matrix which is used to avoid singularity
of the covariance matrix. The transformation for each
instance xi is determined by vi. The quasi-orthogonal con-
straints on UUv ensure that the model will not simply give
zero matrices. By jointly learning the asymmetric metric and
cross-view clustering, we actually realize an asymmetric
metric clustering on Re-ID data across camera views.

Mathematically, if we minimize this objective function,
every UUv will largely depend on the data distribution from
the vth view. Since there is view-specific bias on each view,
any pair of transformations—UUv andUUw—could be arbitrarily
different according to the biases. However, large inconsisten-
cies among the learned transformations are not what we
expect, since these transformations are with respect to person
images fromdifferent views. Although under different condi-
tions, the subjects are human beings, and thus they are inher-
ently correlated and not heterogeneous. Therefore, largely

different projection basis pairs would fail to capture the dis-
criminative nature of the person images.

Hence, to strike a balance between the ability to preserve
the cross-view consistency and the ability to alleviate view-
specific bias, we add a cross-view consistency regularization
term to our objective function. The cross-view consistency
regularization penalizes the discrepancy between any pair
of correlated transformation basis uc

v and uc
w, where uc

v is
the cth column of UUv. Thus, we formulate it as:

fconsistency ¼
X
v;w

X
c

kuc
v � uc

wk22 ¼
X
v;w

kUUv � UUwk2F ; (6)

where k � k is the Frobenius norm of a matrix. And then, our
optimization task is given by

min
fUUvgVv¼1;fckgKk¼1

fobj ¼ fintra þ �fconsistency

¼ 1

N

XK
k¼1

X
i2Ck
kUUT

vi
xi � ckk2 þ �

X
v;w

kUUv � UUwk2F

s:t: UUT
v SSvUUv ¼ II ðv ¼ 1; . . . ; V Þ;

(7)

where� is the cross-view regularizer.We call the abovemodel
theClustering-basedAsymmetricMEtric Learning (CAMEL).

Wewill show by an illustration that the asymmetricmetric
can alleviate the view-specific bias in the Re-ID problem in
Section 4.1, and show that the cross-view consistency regular-
ization contributesmuch in our framework in Section 5.4.2.

Remark 1. (Cross-view Consistency Regularization for the
Metric). We note that although asymmetric metric learn-
ing has been successfully applied in supervised Re-ID [3],
[28], it is a pseudo metric rather than a strict metric [28],
because it may not meet the coincidence property: given
two identical feature vectors xi and xj (xi ¼ xj) from differ-
ent camera views vi and vj, the asymmetric metric may not
guarantee dðxi; xjÞ ¼ 0. In this aspect, the cross-view con-
sistency regularization plays a role to control an upper

Fig. 2. Illustration of our framework DECAMEL. We follow the brown arrows to inspect it. We extract features for person images by a deep network.
Due to view-specific conditions, the initial feature space has severe view-specific bias: the red triangles (data points from Camera 1) and blue circles
(from Camera 2) are far apart. We perform CAMEL to learn an initial asymmetric metric. In the shared space produced by the asymmetric metric, the
view-specific bias is alleviated. By optimizing the proposed unsupervised loss, DECAMEL jointly learns the feature representation and asymmetric
metric in an end-to-end manner. During testing, pairwise distance can be computed by Eq. (2). (Best viewed in color).
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bound of coincidence discrepancy. In fact, according to the
Cauchy Inequality, we have

dðxi; xjÞ ¼ kUUT
vi
xi � UUT

vj
xjk2 ¼ kUUT

vi
xi � UUT

vj
xik2

� kxik2 � kUUvi � UUvjkF :
(8)

The cross-view consistency regularization controls kUUvi�
UUvjkF which is a scaled upper bound of the coincidence
discrepancy. Thus, it makes the learned asymmetric metric
moremathematically principled and rigorous.

3.2 Deep Unsupervised Asymmetric Metric
Embedding

Based on CAMEL and the foregoing analysis, we can further
propose our framework, named the DEep Clustering-based
Asymmetric MEtric Learning (DECAMEL). DECAMEL
embeds the unsupervised asymmetric metric into the net-
work by jointly learning the feature representation and the
asymmetricmetric.

In the last subsection we assume that we have extracted
features for the training images. Here, we specify the feature
extractor function f as a deep convolutional network, which
is parameterized byQ. So, the feature representation is given
by xi ¼ fðMi;QÞ, where M is an image from our training
image set M¼ fMi; vigNi¼1. Our goal is to develop an end-

to-end framework, gðMi; vi;Q; fUUvgVv¼1Þ, which includes the
feature extraction and the unsupervised asymmetric metric
learning.

Recall the objective in Eq. (7), where in CAMEL we aim
to minimize it under constraints. To avoid trivial implemen-
tation and better adapt to the back-propagating algorithm
in the optimization procedure, we develop a soft version of
constraints, by replacing the constraints with a regulariza-
tion term fconstraint similar to fconsistency:

fconstraint ¼
XV
v¼1
kUUT

v SSvUUv � IIk2F : (9)

This technology is widely used in the machine learning prob-
lems. For example, the well-known Tikhonov regularization
is a soft version of the Ivanov regularization [73]. By this way,
we have our loss function of DECAMEL as follow:

floss ¼ fintra þ �fconsistency þ gfconstraint

¼ 1

N

XK
k¼1

X
i2Ck
kUUT

vi
xi � ckk2 þ �

X
u;w

kUUv � UUwk2F

þ g
XV
v¼1
kUUT

v SSvUUv � IIk2F ;

(10)

where g is the soft-constraint parameter. In our experiments
we set g ¼ 10 to basically ensure the constraints. We empiri-
cally find this hyper-parameter needs no exhaustive tuning
across datasets.

CAMEL is a linear metric learning model. Intrinsically, it
cannot discover the underlying non-linear cross-view cluster
structure of the feature representation. In addition, the feature
extraction is separated and independent from metric in
CAMEL. This leads to sub-optimality because the feature
representationmight have the capacity to be further improved

according to the metric. In contrast, DECAMEL addresses
these problems naturally. It jointly learns the feature represen-
tation and the asymmetric metric with non-linearity capacity.
Thus, it learns a better cross-view cluster structure.

3.3 Optimization and Algorithm

Before performing the gradient descent to train DECAMEL,
we first learn an unsupervised asymmetric metric fUUvgVv¼1
by CAMEL to initialize the metric layer of DECAMEL, as
well as the cluster results fckgKk¼1. So we first introduce how
to optimize the objective of CAMEL. We will see that the
metric initialization by CAMEL contributes a lot to thewhole
framework in Section 5.4.4.

3.3.1 Metric Initialization by CAMEL

For convenience, let yi ¼ UUT
vi
xi and YY ¼ ½y1; . . . ; yN �. We

rewrite our objective function using trace instead of sum.
The first term fintra can be rewritten as [74]XK

k¼1

X
i2Ck
kUUT

vi
xi � ckk2 ¼ ½TrðYY TYY Þ � TrðHHTYY TYHYHÞ�; (11)

where

HH ¼ h1; . . . ;hK½ �; hT
k hl ¼ 0 k 6¼ l

1 k ¼ l

�
; (12)

and

hk ¼ 0; . . . ; 0; 1; . . . ; 1; 0; . . . ; 0; 1; . . .½ �T= ffiffiffiffiffi
nk
p

(13)

is an indicator vector with the ith entry corresponding to the
instance yi, indicating that yi is in the kth cluster if the corre-
sponding entry is non-zero.

Now we construct an assignment function � : X ! RVd

where d denotes the feature dimension:

�ðfx; vgÞ ¼ 0T; . . . ; 0T; xT; 0T; . . . ; 0T
� �T

; (14)

where 0 is a zero column vector which has the same size as
x, and x is placed in the vth “entry”. Then we can constructeXX ¼ ½ex1; . . . ;exN � 2 RVd�N , where exi ¼ �ðfxi; vigÞ. Besides, we
construct eUU ¼ UUT

1 ; . . . ; UU
T
V

� �T
; (15)

so that

YY ¼ eUUT eXX: (16)

Substitute Eqs. (16) into (11) and thus fintra becomes

fintra ¼ 1

N
Trð eXXT eUU eUUT eXXÞ � 1

N
TrðHHT eXXT eUU eUUT eXXHHÞ: (17)

As for the second term, we can also rewrite fconsistency as

fconsistency ¼
X
v;w

kUUv � UUwk2F ¼ TrðeUUTD eUD eUÞ; (18)

where

DD ¼
ðV � 1ÞII �II �II � � � �II
�II ðV � 1ÞII �II � � � �II
..
. ..

. ..
. ..

. ..
.

�II �II �II � � � ðV � 1ÞII

26664
37775 2 RVd�Vd

(19)
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has V � V block entries Then, it is reasonable to relax the
constraints

UUT
v SSvUUv ¼ II ðv ¼ 1; . . . ; V Þ (20)to

XV
v¼1

UUT
v SSvUUv ¼ eUUTeSSeUU ¼ V II; (21)

where eSS ¼ diagðSS1; . . . ;SSV Þ, because what we expect is to
prevent each UUv from shrinking to a zero matrix. The relaxed
version of constraints is able to satisfy such a need, and it
allowsmore elegant optimization. By nowwe can rewrite our
optimization task as follows:

mineUU;HH

fobj ¼ 1

N
TrðeXXT eUU eUUT eXXÞ þ �TrðeUUTD eUD eUÞ

� 1

N
TrðHHT eXXT eUU eUUT eXXHHÞ

s:t: eUUTeSSeUU ¼ V II:

(22)

We can easily find that our objective function is non-convex.
Fortunately, in the form of Eq. (22), we can find that onceHH is
fixed, Lagrange’s method can be applied to our optimization
task. And fromEq. (11), we can find that it is exactly the objec-
tive of k-means clustering [72] with respect to yi once

eUU is
fixed. Thus, we can adopt an EM-like alternating algorithm to
solve the optimization problem.

Fix HH and Optimize eUU . After fixing HH and applying the
method of Lagrange multiplier, our optimization task (22) is
transformed into an eigen-decomposition problem as follow:

GGu ¼ hu; (23)

where h is the Lagrange multiplier (and also is the eigen-
value here) and

GG ¼ eSS�1ð�DDþ 1

N
eXX eXXT � 1

N
eXXHHHHT eXXTÞ: (24)

eUU can be obtained by solving this eigen-decomposition
problem.

Fix eUU and OptimizeHH. As for the optimization ofHH, we can
simply fix eUU and conduct k-means clustering in the learned
space. Each column of HH, hk, is thus constructed by Eq. (13)
according to the k-means clustering result.

3.3.2 Optimizing DECAMEL by Gradient Descent

After obtaining the initial fUUvgVv¼1 and fckgKk¼1, we can opti-
mize DECAMEL. We adopt the stochastic gradient descent
(SGD) to optimize DECAMEL. The gradients are

@floss

@UUT
v x
¼ 2ðUUT

v x� ckÞ (25)
and

@floss
@UUv

¼ 2ðxxTUUv � xckÞ; (26)

@floss

@eUU ¼ 2�DDeUU þ 4geSSeUUðeUUTeSSeUU � V IIÞ: (27)

We note that the gradient in Eq. (25) is with respect to
each sample and the gradients in Eqs. (26) and (27) are with

respect to the asymmetric metric. Thus, we refer to Eq. (25)
as the sample gradient and refer to Eqs. (26) and (27) as the
metric gradient in the following Remark 2. We show the
main algorithm of DECAMEL in Algorithm 3.3.2. Note that
fobj is guaranteed to converge as proved in [52]. It typically
reaches convergence within 20 iterations.

Remark 2. (Explanation for Deep Metric Embedding). We
can see from Eqs. (25), (26) and (27) that, the sample
gradient flows over the whole network, while the metric
gradient only flows to the metric. However, the metric is
actually embedded into the sample gradient: according to
the chain rule, the sample gradient for the feature extrac-
tor parameterQ is

@floss
@Q
¼ @floss

@fðM;QÞ
@fðM;QÞ

@Q
¼ @floss

@x

@fðM;QÞ
@Q

¼ @floss

@UUT
v x

@UUT
v x

@x

@fðM;QÞ
@Q

¼ 2ðUUT
v x� ckÞUUT

v �
@fðM;QÞ

@Q
:

(28)

Thus, the metric UUT
v is back-propagated to the whole net-

work. As we will see in Section 4.2, the jointly learned fea-
ture bears resemblance to themetric. Furthermore, wewill
also see in Section 5.4.3 that this improves the cross-view
discriminability of the feature. These observations seem
like the metric is being “embedded” into the feature, and
thuswe refer to it as the “deepmetric embedding”.

Algorithm 1. DECAMEL

Input: The training imagesM, the deep feature extractor fð�;QÞ
1 Training:
2 Metric initialization:
3 Extract feature representations using f to obtain the initial

feature set X .
4 Conduct k-means clustering in X to obtain fckgKk¼1 and to

initializeHH according to Eqs. (12) and (13).
5 FixHH and solve the eigen-decomposition problem
described by Eqs. (23) and (24) to construct eUU .

6 t 1where t denotes each step in the following loop.
7 while fft

objg not convergeddo
� Alternate fixing eUU and HH while optimizing the

other.
� t tþ 1.

8 end
9 Decompose eUU to obtain fUUvgVv¼1.
10 Initialize the deep framework gð�; �;Q; fUUvgVv¼1Þ using Q and
fUUvgVv¼1.

11 End-to-end joint learning:
12 Update fckgKk¼1 fromHH according to Eqs. (12) and (13).
13 while maximum iteration not reached do

� Update Q and fUUvgVv¼1 by performing SGD using
the gradients in

Eqs. (25), (26) and (27).
� Update fckgKk¼1 while fixing Q and fUUvgVv¼1.

14 end
15 Testing:
16 Given two testing images fMi; vig and fMj; vjg, the distance/

dissimilarity is computed by jjgðMi; viÞ � gðMj; vjÞjj2.
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3.4 View Clustering: Generalizing to Unseen Views

In the beginning of this section we follow the conventional
Re-ID setting that assumes the training and testing camera
views are the same. However, some realistic large-scale
applications might need to be view-extendable, i.e., new
unseen camera viewsmight be added to the surveillance net-
work after training. In this case, the generalizability to new
views becomes important. We propose a general method
toward view-extendable scenarios for achieving better gen-
eralizability. The proposed method does not need to re-train
themodel when new views are added after training.

The main idea is that instead of learning feature transfor-
mations for each camera view, we can learn transformations
for some generalizable view prototypes, which shall cover the
most typical view-specific conditions. Then, if a new, unseen
view is added after training, we can assign the new view to a
view prototype and thus use the corresponding feature
transformation.We elaborate our strategy in the following.

To better motivate our method, we start from defining
pairwise dissimilarity/distance dV ð�; �Þ of two camera views.
As our model addresses view-specific bias in an overall view
level, a straightforward idea is to define dV ð�; �Þ as the distance
between distributions of images from the two views. We
adopt the simplified 2-Wasserstein distance [75], [76],1 which
has been shown effective and easy-to-compute in many
vision tasks [76], [77], defined as:

dV ðViewu; ViewvÞ2 ¼ 1

2
ðkmu �mvk22 þ kssu � ssvk22Þ; (29)

where mv is the mean vector of all training sample features
(extracted by the feature network) from Viewv, ssv is the corre-
sponding standard deviation vector, andmu; ssu are similarly
defined. From Eq. (29) we can define the view representation
of Viewv as:

wv ¼ ½mT
v ; ss

T
v �T; (30)

so that the L2 distance of the view representations is now
equivalent to the distributional distance, i.e. 12 kwu �wvk22 ¼
dV ðViewu; ViewvÞ2.

With the view representation, we can model the general-
izable view prototype as a cluster of views. View clusters can
be generalizable and robust, since slight deviation of viewing
condition is allowed in a view cluster, and hence each view
cluster can cover and deal with the potential deviations of a
new unseen view. For example, in a shopping mall, a newly
added camera view facing a passageway may probably find
a view cluster consisting of several other passageways views
that share similar viewing conditions. One can use any clus-
tering algorithm according to specific requirements, and in
our method we adopt the simplest K-means clustering, as
formulated by:

min
fbjgJj¼1

fvc ¼ 1

V

XJ
j¼1

X
v2Bj
kwv � bjk22; (31)

where V is the number of views, J is the number of view
clusters, bj denotes the centroid of the jth cluster and Bj ¼
fvjwv 2 jth clusterg.

After obtaining J view clusters, we regard the view clus-
ters as the views for training DECAMEL. After training, if a
new view comes, we first assign this view to the most similar
view cluster and use its feature transformation. We refer to
this method as DECAMEL with View Clustering (DECA-
MELVC). We summarize DECAMELVC in Algorithm 2. By
DECAMELVC, the learned feature transformations can natu-
rally generalize to unseen views.

Algorithm 2. DECAMEL with View Clustering

Input: The training imagesM, the deep feature extractor fð�;QÞ
1 Training:
2 Compute the view representations fwvgVv¼1 by Eq. (30) .
3 Conduct k-means clustering in fwvgVv¼1 to obtain the cluster

separation Bj ¼ fvjwv 2 jth clusterg.
4 For each image Mi in the training set, reassign a view label

v0i  j where vi 2 Bj to it. So we now have 1 � v0i � J (the
number of view clusters).

5 FeedM0 ¼ fMi; v
0
ig to Algorithm 3.3.2 to train a deep frame-

work gð�; �;Q; fUUjgJj¼1Þ.
6 Use the learned feature extractor gð�;QÞ to compute view
prototypes/centroids fbjgJj¼1.

7 Testing for an unseen view u:
8 Extract the view representationwu using the learned feature
extractor gð�;QÞ.

9 Assign this view to a view prototype jwhere
j ¼ argminjkwu � bjk2.

10 Assign a view label j to all testing images from this view.
11 Follow the testing procedure in Algorithm 1.

Scalability. Solving Eq. (23) requires eigen decomposition
whose computational complexity is OððVdÞ3Þ where V is the
number of views and d is the feature dimension which is con-
stant. In the view-extendable setting, we can pre-define the
number of generalizable view prototypes J (J � V ), leading
to a constant computational complexity of the eigen decom-
position in Eq. (23). In the conventional Re-ID setting where
training views and testing views come from the same pool,
we can perform view clustering (and pre-define J) only for
CAMEL (i.e., metric initialization). Then, the ith (1 � i � J)
learned transformation is used to initialize all the view-spe-
cific transformations that belong to the views in the ith view
cluster (so that in the joint learning of DECAMEL we still
learn V transformations). We refer to this method as DECA-
MEL Initialized with View Clustering (DECAMELIVC). We
find that using a relatively small J for DECAMELIVC could
achieve very close performance as DECAMEL. The experi-
mental result is shown in the supplementary material, which
can be found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2018.2886878.

Finally we also note that DECAMELVC is a generalization
of both DECAMEL and its symmetric version in the conven-
tional Re-ID setting. If we set J ¼ V , the method is equivalent
to original DECAMEL. On the other hand, if we set J ¼ 1, the
method degrade to learning a universal feature transforma-
tion. In this sense, DECAMELVC allows us to flexibly control
the generalizability versus ability to accurately model each
specific viewing conditions, according to the given applica-
tion scenario.

1. This simplified 2-Wasserstein distance makes a Gaussian assump-
tion over the sample features, which is also empirically observed in our
experiments. We refer the reader to [76] for further justification.
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4 INSIGHT UNDERSTANDING

In this section, we show visual results to provide intuitive
perceptions on the mechanism of our framework. We first
illustrate that the learned asymmetric metric can alleviate
the view-specific bias in the original/initialized feature space
more easily than a symmetric one. Then, we illustrate how
DECAMEL progressively learns a better cross-view cluster
structure based on the learned asymmetric metric by joint
learning, and how it mines the potential cross-view discrimi-
native information.

4.1 AsymmetricMetric Alleviates Views-SpecificBias

In Fig. 3, we show three cross-view data distributions, which
are in the original/initialized feature space, the shared space
learned by a symmetric version of CAMEL and the shared
space learned by CAMEL, respectively.

We can see from Fig. 3a that in the original feature space,
there is severe view-specific bias. One can easily draw a bor-
derline to separate the data from different views. Then, in
Fig. 3b, the view-specific bias is still severe in the shared
space found by the learned symmetric metric (view-generic
transformation), mainly because only some view-generic
rotations and translations are taken for both views. In con-
trast, in Fig. 3c, in the shared space learned by CAMEL, the
view-specific bias is alleviated so that data points from two
views aremuchmore overlappedwith each other. One of the
main reasons is that the learned view-specific transforma-
tions providemore flexibility to facilitate alleviating the bias.

4.2 DECAMEL Learns Cross-View Cluster Structure

In Fig. 4, we further show the cross-view distributions in both
the feature space and the shared space learned byDECAMEL
in different stages. By examining the distributions through
stages, we can obtain an intuitive understanding for DECA-
MEL, in terms of how it progressively learns a better cross-
view cluster structure.

Initialization. The metric initialization (i.e., CAMEL) learns
a preliminary cross-view cluster structure. We first look at the
leftmost column in Fig. 4. We can see that in the original fea-
ture space (the leftmost figure in the upper row), the view-
specific bias is severe as we have seen in the last subsection

(data points are a subset of Fig. 3a). In contrast, after the initial
metric layer (the leftmost figure in the lower row), the bias is
alleviated (data points are a subset of Fig. 3c). Then, by com-
paring them, we can see that CAMEL learns a preliminary
cross-view cluster structure, i.e., the cross-view data points
representing the same identity (color) roughly get closer to
each other.

Joint Learning. The joint learning facilitates learning a bet-
ter cross-view cluster structure. The upper row in Fig. 4
shows the feature distributions in several stages. Through
them,we can find that the feature extractor network is guided
by the learned cross-view cluster structure to improve the
feature representation, and in the convergence stage the
view-specific bias is alleviated. This shows that the asymmet-
ric metric is embedded into the whole network, as we dis-
cussed in Remark 2. This is mutually helpful in learning the
asymmetric metric. The lower row in Fig. 4 shows the corre-
sponding distributions after asymmetric metric layer.
Through them, we can find that the asymmetric metric grad-
ually learns a better cross-view cluster structure. Take the
purple and blue identities for example. In the initial shared
space (the leftmost figure in the lower row) there is around
1=3 data points of them overlapped with each other. How-
ever, alongwith the joint learning procedure, they are getting
more and more compact, and finally there is nearly no over-
lap between them in the convergence stage.

Mining Potential Discriminative Information. Finally, by com-
paring the initial feature distribution (the leftmost figure in
the upper row) with the convergence distribution (the right-
most figure in the lower row), we can find that through the
joint learning of DECAMEL, a better cross-view cluster struc-
ture is learned. Since the view-specific bias has been alleviated
by the asymmetric metric, the cross-view data points belong-
ing to the same identity can get closer to each other in the con-
vergence stage, rather than entangling and overlapping with
other identities in the initialized feature space. Therefore, dur-
ing this learning procedure DECAMEL is attempting to mine
the potential cross-view discriminative information. We will
further show a quantitative result on evaluating the learned
cross-view cluster structures in Section 5.4.1, which experi-
mentally validates that DECAMEL learns a better cross-view
cluster structure compared to using a symmetricmetric.

Fig. 3. Illustration of asymmetric metric alleviating view-specific bias. The data is randomly sampled from the SYSU dataset [28]. We performed PCA
for visualization. Blue circles and red triangles represent data points from two camera views. (a) Cross-view data distribution in original feature repre-
sentation space. View-specific bias is severe here, since one can easily draw a boundary to roughly separate the circles and triangles. (b) Distribution
in the shared space after projected by the learned view-generic transformation (symmetric metric). The bias is not alleviated. (c) Distribution in the
shared space after projected by the learned view-specific transformations (asymmetric metric). The bias is largely alleviated. (Best viewed in color).
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5 EXPERIMENTS

In this section we compare the performance of DECAMEL
with other related unsupervisedmodels to show the effective-
ness. Then, we perform experimental validations and analysis
to provide further comprehensive understanding of our
framework.

5.1 Datasets

We conduct our comparisons on seven datasets, whose scales
vary from hundreds to hundreds of thousands. In particular,
since unsupervised models are more meaningful when the
scale of problem is larger, our experiments are conducted on
relatively bigger datasets except VIPeR [78]which is small but
widely used. Various degrees of viewing condition variation
can be observed in all these datasets (see Fig. 5). A brief over-
view of the dataset scales can be found in Table 1.

The VIPeR dataset [78] contains 1264 images, where every
two images are captured for each identity from two camera
views.

The CUHK01 dataset [79] contains 3,884 images of 971
identities captured from two disjoint views.

The CUHK03 dataset [29] contains 13,164 images of 1,360
pedestrians captured from six surveillance camera views.
Pedestrian images were detected by a state-of-the-art pedes-
trian detector.

The SYSU dataset [28] includes 24,448 RGB images of 502
persons under two surveillance cameras. One camera view
mainly captured the frontal or back views of persons, while
the other observed mostly the side views.

The Market-1501 dataset [80] (Market) contains 32,668
images of 1,501 pedestrians, each of which was captured by
at most six cameras. All of the images were cropped by a
pedestrian detector. There are some badly-detected samples
in this datasets as distractors as well.

The ExMarket dataset. Unsupervised models are more
meaningful when the problem scale is larger due to the

Fig. 4. Illustration of DECAMEL learning the better cross-view cluster structure via jointly learning the feature representation and the asymmetric met-
ric. We perform PCA for visualization. Images of an identity are indicated by a specific color (e.g., all red triangles and circles are images of the first
identity in the feature space). The numbers in the upper left of each figure indicates different stages, from initial to convergence. The two figures in
each column are synchronous and corresponding to each other. Data points are only a subset from those in Fig. 3 for clarity. Specifically, the initial
stages (the leftmost column) are subsets of Fig. 3a and 3c, respectively. (Best viewed in color and please refer to the text in Section 4.2 for more
analysis. Please zoom in for better visual quality).

Fig. 5. Samples of the datasets. Every two images in a column are from
one identity across two disjoint camera views. (a) VIPeR (b) CUHK01 (c)
CUHK03 (d) SYSU (e) Market (f) ExMarket (g) MSMT17.

TABLE 1
Overview of Dataset Scales

Dataset VIPeR CUHK01 CUHK03 SYSU Market ExMarket MSMT17

# Samples 1,264 3,884 13,164 24,448 32,668 236,696 126,441

# Views 2 2 6 2 6 6 15

“#” means “the number of”.

YU ET AL.: UNSUPERVISED PERSON RE-IDENTIFICATION BY DEEP ASYMMETRIC METRIC EMBEDDING 965

Authorized licensed use limited to: Stanford University. Downloaded on October 01,2021 at 07:23:29 UTC from IEEE Xplore.  Restrictions apply. 



difficulty in labelling substantial cross-view data. In order to
evaluate unsupervised Re-ID methods on an even larger
scale, we further combined the MARS dataset [81] with Mar-
ket. MARS is a video-based Re-ID dataset which contains
20,715 tracklets of 1,261 pedestrians. All the identities from
MARS are of a subset of those from Market. We then took 20
percent frames (each one in every five successive frames)
from the tracklets and combined them with Market to obtain
an extended version of Market (ExMarket). The imbalance
between the numbers of samples from the 1,261 persons and
other 240 persons makes this dataset more challenging and
realistic. There are 236,696 images in ExMarket in total, and
112,351 images of them are of training set.

The MSMT17 Dataset [82] is currently the most large-scale
dataset which contains 126,441 images of 4,101 persons cap-
tured from 15 camera views during four days. Extreme
lighting variations can be observed across camera views.

5.2 Settings

Experimental Protocols. We follow a widely adopted protocol
on VIPeR [19], i.e., randomly dividing the images into two
halves, one ofwhich is used as training set and the other as test
set. This procedure is repeated 10 times to offer an average per-
formance. This dataset only allows single-shot experiments.

The experimental protocol for CUHK01 was the same as
that in [19]. We randomly selected images from 485 persons
to form the training set and images from the rest 486 persons
formed the testing set. The evaluating procedure is repeated
10 times. We perform both multi-shot and single-shot experi-
ments. That is, in the single-shot setting only one image of
each gallery person is used for evaluation, whereas in the
multi-shot setting all the images of each gallery person are
used. In both settings, all probe images are used.

The CUHK03 dataset is provided together with its recom-
mended evaluating protocol [29]. We follow the provided
protocol, where images of 1,260 persons are chosen as the
training set, and the remainders as testing set. This procedure
is repeated 10 times. Both multi-shot and single-shot experi-
ments are conducted.

As for the SYSU dataset, we randomly pick half pedes-
trians as training set and the others as testing set. In the test-
ing stage, we basically follow the protocol as in [28]. That is,
we randomly choose one and three images of each pedes-
trian as gallery for single-shot and multi-shot experiments,
respectively. We repeat the testing procedure by 10 times.

Market is somewhat different from others. The evalua-
tion protocol is also provided along with the dataset [80].
Since images of one person come from at most six views,
the provided protocol does not adopt the single-shot setting.
Instead, the protocol adopts the multi-shot setting and
requires both the cumulative matching characteristic (CMC)
and the mean average precision (MAP) [80]. The protocol of
ExMarket is identical to Market since the identities from
both datasets are completely the same as we mentioned
above. For MSMT17 [82] we also use the provided protocol.

Implementation Details. We adopt the 56-layer ResNet [84]
as the feature extractor network where the dimension is 64.
The network is pre-trained using the JSTL pre-training tech-
nique proposed in [32], which used softmax loss with a con-
catenation of several Re-ID datasets including CUHK03
[29], CUHK01 [79], PRID [85], VIPeR [78], 3DPeS [86], i-

LIDS [87] and Shinpuhkan [88]. We do not exploit fine-tun-
ing or the domain guided dropout proposed in [32]. Note
that we do not use any label of the target dataset. For exam-
ple, when pre-training the feature extractor network for the
CUHK03 dataset, we exclude all the training samples from
the CUHK03 dataset, to guarantee an unsupervised setting
[52]. After pre-training, we remove the last fully-connected
layer and take the output of the second-last global average
pooling layer [84] as our feature. Also note that for MSMT17
[82], since it is highly challenging for unsupervised setting
due to extreme lighting variations, we add Market-1501,
SYSU and the Duke dataset [89], [90] to its pre-training set
to improve the baseline feature.

We set � ¼ 0:01, K ¼ 500 and fix them for all the datasets
in the following comparisons. We also show a parameter
evaluation on these major hyper parameters which are corre-
sponding to certain characteristics of DECAMEL. We typi-
cally set the SGD iterations to 10,000 and the learning rate to
0.005 which is divided by 5 after 5,000 iterations. No weight
decay (L2 regularization) is applied. The batch size is 216. To
guarantee that each batch contains all views,we first compute
the distribution of the numbers of samples in each view in the
training set (say we have two views and the distribution is
[0.4, 0.6]), and then we randomly sample 0.4*216¼ 86 images
in the first view and 0.6*216¼ 130 images in the second view.
We note that we can also use standard random sampling and
this empirically does not affect the performance, as shown in
the supplementarymaterial, available online. The framework
is implemented based on theMatConvNet [91].2

5.3 Comparison to Related Unsupervised Models

Comparison to Related Unsupervised Re-IDModels. We first com-
pare DECAMEL with the unsupervised Re-ID models. For a
more fair and comprehensive comparison, we conduct
experiments on the seven datasets for DECAMEL and the
code-available related models. The compared models in the
following comparisons adopt the same baseline JSTL feature
which is used for initialization in DECAMEL. We have tuned
the hyper parameters for the compared models to adapt to
the JSTL feature, and thus report even better results than the
original in literatures [46], [47], [48] (the performances are
worse than the original without this tuning procedure). We
use the available code for the sparse dictionary learning
model (denoted as DIC) [48], the sparse iterative re-ranking
model ISR [46], the CCA-based kernel subspace learning
model RKSL [47], and sparse auto-encoder (SAE) [83]. We
also compare our model with the baseline JSTL feature [32],
which adopts the euclidean distance as its metric. The com-
parative results aremeasured by the cumulative characteristic
curve and the rank-1 matching rate of CMC. We show the
matching rate in Table 2, and show the CMC in Fig. 6.

As reported in Table 2, our model outperforms other
models on all the datasets in both settings. In addition, from
Fig. 6, our model outperforms other models by large mar-
gins at any rank. This is partly because DECAMEL explic-
itly deals with the view-specific bias problem by learning an
asymmetric metric. Note that the improvements are notably
significant on CUHK01 and SYSU. We can see that the

2. Demo code is available in https://github.com/KovenYu/
DECAMEL.
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cross-view condition variations are particularly severe on
these two datasets as shown in Fig. 5b and 5d intuitively.
For example, the changes of illumination are extremely
severe in Fig. 5b and 5d, and the differences between features
from the two views may be caused more by illumination
than by identity under such a situation. In particular,
although the CCA-based model RKSL also produces specific
feature projections for different views, it learns the specific
feature projections inconsistently, and thus does not deal
with the view-specific bias. Apart from this, DECAMEL (and
CAMEL as reported in Table 5) learns a compact cross-view
cluster structure for mining potential discriminative inform-
ationwhile RKSL does not.

Comparison to Published State-of-the-Art Results. Now we
compare our model with the reported results in published
literatures, including the transfer learning model UDML
[49], the hand-crafted feature model SDALF [42], the graph
learning model GL [50] and the saliency learning model GTS
[45] and SDC [44]. We show the comparative results in
Table 3. Note that these models have not been evaluated on
SYSU, Market and ExMarket, so we can only compare with
their reported results on VIPeR, CUHK01 and CUHK03 (all
single-shot). As shown in Table 3, DECAMEL outperforms
thesemodels.

Comparison to Clustering-Based Metric Models. We also
compare with a typical clustering-based metric learning
model AML [54], and a recently proposed one UsNCA [55].
As reported in Table 2 and Fig. 6, DECAMEL can also
achieve notable improvements over them. A main reason
should be that DECAMEL learns an asymmetric metric to
address the view-specific bias problem so as to learn a better
cross-view cluster structure. In contrast, the compared clus-
tering-based models do not take into consideration this issue
which is particularly important for Re-ID.

5.4 Further Analysis of DECAMEL

In the following, we provide some further experimental
validations and analysis to make a more comprehensive
understanding for the framework components and show
some significant properties.

5.4.1 Asymmetric versus Symmetric Modelling

We first evaluate the asymmetric modelling in our frame-
work. To this end, we develop a symmetric version of
DECAMEL and denote it as DECMEL. The only difference
between them is that DECMEL learns (and embeds) a sym-
metric metric instead of an asymmetric one. We show the
comparative results of performances in the upper part of

Fig. 6. CMC curves for comparisons with related unsupervised models. In each legend, the figure beside the model name is the rank-1 matching rate.
For clarity, we omit VIPeR and show the single-shot results for CUHK01, CUHK03 and SYSU.

TABLE 2
Comparison with Related Unsupervised Models: Single-Shot (“Single”) and Multi-Shot (“Multi”) Rank-1

Matching Rate and MAP in Percentage

Dataset VIPeR CUHK01 CUHK01 CUHK03 CUHK03 SYSU SYSU Market ExMarket MSMT17

Measure single single multi single multi single multi multi(MAP) multi(MAP) multi(MAP)

DIC [48] 29.94 49.31 52.85 27.38 36.51 21.28 28.56 50.21(22.68) 52.18(21.19) 22.81(7.01)
ISR [46] 27.53 53.17 55.66 31.13 38.50 23.16 33.77 40.32(14.27) 42.99(15.74) 21.50(6.10)
RKSL [47] 25.76 45.41 50.13 25.79 34.75 17.64 23.01 33.97(11.03) 34.86(10.40) 15.41(4.30)
SAE [83] 20.70 45.33 49.94 21.18 30.51 18.02 24.15 42.40(16.23) 43.97(15.10) 19.29(5.50)
JSTL [32] 25.73 46.26 50.61 24.66 33.15 19.92 25.59 44.69(18.36) 46.41(16.68) 21.24(6.05)
AML [54] 23.10 46.78 51.14 22.19 31.41 20.88 26.39 44.71(18.36) 46.20(16.22) 21.16(6.08)
UsNCA [55] 24.27 47.01 51.70 19.76 29.59 21.07 27.18 45.22(18.91) 47.03(16.91) 22.01(6.53)
DECAMEL 34.15 65.81 69.00 38.27 45.82 36.14 43.90 60.24(32.44) 62.98(33.28) 30.34(11.13)

In each column, the best is indicated in red and the second in blue.
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Table 4. We can see that DECAMEL achieves much higher
performances than DECMEL.

To further explore the differences between DECAMEL
and DECMEL, we also develop a natural, reasonable mea-
sure to evaluate the learned cross-view cluster structure in
terms of mining the cross-view discriminative information.
The measure is formulated as

S ¼ inter=intra

¼ 1

P ðP � 1Þ
XP
p6¼q
kdp � dqk2

 !
=

1

T

XP
p¼1

X
i2Dp
kxi � dpk2

0@ 1A;

(32)

where P denotes the number of persons, Dp is a set contain-
ing the indexes of all the cross-view images of the pth per-
son, dp denotes the centroid of the pth person, and T
denotes the total number of cross-view person images. In
Eq. (32), the numerator measures the inter-person discrep-
ancy and the denominator measures the intra-person dis-
crepancy. We note that we only use the label information to
form the measure to evaluate how discriminative the
learned cross-view cluster structure is for Re-ID, i.e., the
higher the S value is, the more easily we can distinguish dif-
ferent persons. We show the comparative results in the
lower part of Table 4. We can see in Table 4 that DECAMEL
has higher S values on all datasets, indicating that the asym-
metric modelling in our framework helps learn a better
cross-view cluster structure to facilitate mining the potential
cross-view discriminative information. This can be one of
the main reasons why DECAMEL outperforms DECMEL.
In the following parameter evaluation we will further
explore the behavior of the proposed asymmetric
modelling.

5.4.2 Parameter Evaluation

In the comparisons we fix the major hyper parameters, and
here we discuss the behaviors of the major hyper parameters
to have a better understanding of our framework. The cores
of our framework are asymmetric modelling and cross-view
clustering. They are characterized mainly by � (the cross-
view consistency regularizer) andK (the number of clusters),
respectively.

Evaluation of ��: Characteristic of Asymmetric Modelling. The
cross-view consistency regularizer, �, controls the degree of
asymmetric modelling. When � is larger, the larger penalty
enforces the discrepancy between any pair of projection basis
to be smaller, and thus the asymmetric modelling will
become more symmetric. We show the matching rate as a
function of � in Figs. 7a, 7b and 7c. When � is in a median
range, the performance is relatively stable. When � is too
large, thematching rate will drop. In fact, in the extreme case
when � goes to infinity, it is equivalent to the symmetric ver-
sion. This shows that the asymmetric modelling is very
significant in our framework.

On the other hand, when � is too small, the matching rate
also drops. To understand the reason behind, we examine the
extreme case when � ¼ 0. This is equivalent to taking out the
cross-view consistency regularization in Eqs. (7) and (10). In
this extreme case, the model actually fails to learn. To reveal
the underlying reason, we show the cross-view data distribu-
tion in the learned shared space without the regularization in
Fig. 7d. We find that the distribution collapses roughly to two
lines. This is because the intrinsic consistency across the distri-
butions of different views is not preserved by the arbitrarily

TABLE 3
Comparison with the State-of-the-Art Unsupervised Re-ID

Models Reported in Literature

Model SDALF UDML GL SDC GTS DECAMEL

[42] [49] [50] [44] [45]

VIPeR 19.9 31.5 33.5 26.7 25.2 34.2
CUHK01 9.9 27.1 41.0 26.6 - 65.8
CUHK03 4.9 - 30.4 7.7 - 38.3

The performance is measured by rank-1 matching rate (%) in single-shot set-
ting. “-” means no reported result. In each row, the best is indicated in red and
the second in blue

TABLE 4
Evaluation of the Asymmetric Modelling in Our Framework

Dataset CUHK01 CUHK03 SYSU Market ExMarket MSMT17

Measure single single single multi(MAP) multi(MAP) multi(MAP)

DECMEL 55.95 27.86 25.38 49.94(23.15) 53.00(26.53) 23.88(8.01)

DECAMEL 65.81 38.27 36.14 60.24(32.44) 62.98(33.28) 30.34(11.13)

Measure S S S S S S

DECMEL 2.13 1.44 1.61 1.79 1.82 1.33

DECAMEL 2.36 1.87 1.88 1.93 1.97 1.42

“DECMEL” denotes the symmetric version of DECAMEL. The S value is
defined in Eq. (32). The performance is measured by single-shot (“single”) and
multi-shot (“multi”) rank-1 matching rate and MAP in percentage. For clar-
ity, we drop VIPeR and the multi-shot results of CUHK01, CUHK03 and
SYSU, which follow a similar pattern to single-shot results.

Fig. 7. (a)-(c) Matching rate versus � on the three large-scale datasets. Similar observations can be made on other datasets. (d) The cross-view dis-
tribution without cross-view consistency regularization. Data is from the SYSU dataset, and we performed PCA for visualization as in Fig. 3.
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different transformations. Thus, without the cross-view con-
sistency regularization, the learned transformations become
extreme tominimize the objective and produces the collapsed
cross-view distribution. Clearly, such a distribution loses the
discriminative information. This observation shows that the
cross-view consistency regularization averts learning a shared
spacewith collapsed cross-view distribution.

Evaluation of KK: Characteristic of Asymmetric Metric Cluster-
ing. K is the number of clusters in DECAMEL. We show the
matching rate as a function of K in Fig. 8. In the middle blue
parts in Fig. 8, whenK is set in a median range, e.g., 300-700,
the bars are tightly close to each other. This shows that to a
mild extent, our framework is robust toK.

To further explore the reason behind, we show in Fig. 9
the number of clusters which contains more than one person
(i.e., > 1 persons) when K varies. From Fig. 9, it is found
that (1) despite K is varying, there is always a number of
clusters containing more than one person in the initialization
stage, i.e., the cluster results are in fact far from perfect. And
(2), in the convergence stage the numbers are consistently
decreased compared to the initialization stage. This indicates
that forK in amedian range, the cluster results are improved
consistently. This can be a reason for themild robustness.

However, on the other hand, we can also find that in Fig. 8,
the two extreme cases (red parts) whereK ¼ 1 andK ¼ 1940
lead to performance drop. In the case whenK ¼ 1, the model
fails to learn, somewhat similar to the situation shown in 7d,
because K ¼ 1 leads to a collapsed distribution where all the
data points are pulled towards a single centroid.

5.4.3 Quantitative Component-Wise Evaluation

Now we discuss how framework components contribute to
DECAMEL. We first set the learning rate to 0 for the metric
layer to freeze it. By this way, the framework only learns the
feature representation. We denote this derived model as
DECAMELf . Similarly, we freeze the feature extractor, so we
haveDECAMELm. We also compare DECAMELwith the ini-
tialization stage (CAMEL). Besides, we compare the initial-
ized feature representation (denoted as Featinit) with the
feature learned bymetric embedding, i.e., we take the feature
alone out of DECAMEL for comparison (denoted as Featembd).
We show the results in Table 5.

From Table 5 we can make three observations: (1) by com-
paring Featinit with Featembd, we find that Featembd consis-
tently outperforms Featinit. This shows that the deep
asymmetric metric embedding also learns some underlying
cross-view discriminative information for the feature repre-
sentation, as have been illustrated in Section 4.2. (2) By com-
paring DECAMELf and DECAMELm with DECAMEL, we
find that any single component cannot achieve improve-
ments as DECAMEL. This shows that the two components of
DECAMEL are intrinsically joint and cooperative, and their
effects aremutually promoting each other, rather than simply
linearly superposed. (3) By comparing CAMEL with DECA-
MEL, we can find that DECAMEL further provides notice-
able improvements over CAMEL. This suggests the potential
of jointly learning feature andmetric in unsupervised Re-ID.

5.4.4 Effect of Metric Initialization

As Remark 2 reveals, the joint learning of DECAMEL is par-
tially guided by the metric. We compare our proposedmetric
initialization (CAMEL) to two standard initialization strate-
gies, i.e., identity matrix (in the view of distance metric) and
randomly initialized matrix using the Xavier initialization
[92] (in the view of fully-connected layer), and we denote
their results as DECAMELi and DECAMELr, respectively.
As shown in Table 6, DECAMEL outperforms both of them.
This is because in our learning algorithm, the metric initiali-
zation method CAMEL can learn an asymmetric distance
metric which captures the cross-view person appearance var-
iations, providing a cross-view discriminative initialization

TABLE 5
Component-Wise Evaluation. Featinit Denotes the

Initialized Feature

Dataset CUHK01 CUHK03 SYSU Market ExMarket MSMT17

Measure single single single multi(MAP) multi(MAP) multi(MAP)

Featinit 46.26 24.66 19.92 44.69(18.36) 46.41(16.68) 21.24(6.05)

Featembd 53.67 33.20 28.29 51.90(25.56) 58.37(28.21) 25.31(8.49)

CAMEL 57.30 31.89 30.76 54.45(26.31) 55.88(23.88) 27.06(9.14)

DECAMELf 64.17 36.71 34.74 55.97(29.30) 60.01(31.11) 27.20(9.78)

DECAMELm 54.88 30.15 26.06 51.19(23.65) 54.81(23.09) 26.74(8.86)

DECAMEL 65.81 38.27 36.14 60.24(32.44) 62.98(33.28) 30.34(11.13)

Featembd denotes the feature learned by metric embedding. DECAMELf
denotes the model when asymmetric metric layer is frozen while DECAMELm
denotes when feature extractor is frozen. Performance is measured by single-
shot (“single”) and multi-shot (“multi”) rank-1 matching rate and MAP in
percentage. For clarity, we drop VIPeR and the multi-shot results of
CUHK01, CUHK03 and SYSU, which follow a similar pattern to single-shot
results.

Fig. 8. Matching rate as a function ofK on CUHK01.K (blue parts) is lin-
early spaced from 100 to 1000. We show two extreme cases (red parts)
when K ¼ 1 and K ¼ 1940, where 1940 is the number of total training
samples. Similar observations can be made on other datasets.

Fig. 9. Number of clusters containing more than one person at the initial
stage (red solid line) and at the convergence stage (blue dashed line)
when K varies on CUHK01. Similar observations can be made on other
datasets.
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suitable for the unsupervised feature learning, and therefore
achieve superior performance.

5.4.5 Benefiting from Extra Labelled Data

We evaluate a significant property of our framework: the abil-
ity to benefit from a little extra labelled data. This is a natural
way to further boost the performance for an unsupervised
application scenario. We give label information to a small
proportion of training samples, i.e., 10, 20 and 30 percent.
These labelled samples are separated from the unlabelled
samples and form extra clusters according to their labels. We
show in Table 7 the results onMarket which is very represen-
tative and similar observations can bemade on other datasets.
We can see thatwhen given a little extra label information, the
accuracy is improved aswell asMAP.

5.4.6 Benefiting from More Unlabelled Data

In typical unsupervised Re-ID scenarios, e.g., public surveil-
lance, the available data increases with time. Therefore, it is
significant for an unsupervised Re-ID model to benefit from
more unlabelled samples. We evaluate this property by vary-
ing the training set size on the largest dataset ExMarket,
which uniquely provides over 100,000 samples. We show the
results in Table 8. We can see that when the training set size
grows, the accuracy andMAP are improved significantly.

5.4.7 Running Time

We report the running time of our model on the Market-1501
dataset in Table 9, compared to the most competitive models
Dic [48] and ISR [46] which together take all the second places
in Table 2. A GTX Titan X GPU is used for deep learning in
DECAMEL. We can see that the testing procedure (i.e., usage
after deployment) of DECAMEL is efficient.

5.5 Evaluation on the View Clustering

In the followingwe evaluate the ViewClustering proposed in
Section 3.4 for view-extendable (i.e., requiring to add new
views during testing stage) and large-scale applications.

The View-Extendable Re-ID Setting. To evaluate the perfor-
mance in the view-extendable scenario instead of the conven-
tional Re-ID setting, we divide the 15 views of the MSMT17
dataset to two sets: a set of 2/3 of all the views, i.e., 10 views
as training views, and a set of the other 1/3, i.e., 5 views as
testing views. In the training stage, we only use the training
images that are from the training views, but discard all the
training images from the testing views. More specifically, we
randomly divided all views into 3 subsets each of which con-
tains 1/3 of all the views, andwe alternatively select one sub-
set as testing views and the other two as training views,
repeat the above procedure for three different subset divi-
sions (i.e., in total we train and test for 3*3 ¼ 9 times) and
report the overall averaged results. In the testing stage, we
only use the probe images from the testing views for comput-
ing the quantitative results (i.e., Rank-1 accuracy and MAP).
In this view-extendable setting, for comparability to the con-
ventional setting, we remain the gallery set to contain images
from all views, so that the only difference between these two
settings is whether the models have seen training samples
from the testing views in the training stage. We also report
the results on the Market-1501 dataset on which 2 views are
for testing views.

Comparative Results. Following the above view-extendable
setting, we report the comparative results with themost com-
petitive method (i.e., Dic) as well as a clustering-basedmodel
AML on theMarket-1501 andMSMT17 dataset in Table 10. In
our method DECAMEL with View Clustering (denoted as
DECAMELVC and introduced in Section 3.4) we set the num-
ber of view clusters to 10 onMSMT17 and 4 onMarket-1501.

From Table 10, two observations can be made: 1) Our
method also outperforms the compared methods with a
clear margin in this view-extendable setting. 2) In the view-
extendable setting, the performances are lower than those
in the conventional setting, but this is reasonable since the
training samples from the testing views are not available.

Generalizability of the View Clustering. We further investi-
gate the generalizability of VC when more training views are

TABLE 6
Evaluation of Different Initialization Strategies: Single-Shot
(“Single”) and Multi-Shot (“Multi”) Rank-1 Matching Rate

and MAP in Percentage

Dataset CUHK01 CUHK03 SYSU Market ExMarket MSMT17

Measure single single single multi(MAP) multi(MAP) multi(MAP)

DECAMELi 48.33 28.59 18.71 40.14(15.89) 41.06(14.40) 25.65(8.32)

DECAMELr failed failed failed failed failed failed

DECAMEL 65.81 38.27 36.14 60.24(32.44) 62.97(33.28) 30.34(11.13)

“DECAMELi” and “DECAMELr” denote DECAMEL initialized by identity
matrix and random matrix [92], respectively, rather than CAMEL. For clarity,
we drop VIPeR and the multi-shot results of CUHK01, CUHK03 and SYSU,
which follow a similar pattern to single-shot results.

TABLE 7
Evaluation When Given Label Information to a Small

Proportion of Training Samples on Market

Proportion 0% 10% 20% 30%

Acc. (MAP) 60.24(32.44) 64.55(38.26) 67.01(40.33) 69.98(43.20)

Similar observations can be made on other datasets. “Acc.” is the rank-1
matching rate measured in %.

TABLE 8
Evaluation When the Training Samples Size Grows

on the Largest Dataset ExMarket

# Training samples 1,000 10,000 100,000 112,351(all)

Acc. (MAP) 52.52(22.33) 60.04(30.17) 62.86(33.21) 62.98(33.28)

“#” means the number of. “Acc.” is the rank-1 matching rate measured in %.

TABLE 9
Running Time on the Market-1501 Dataset

Method Dic [48] ISR [46] DECAMEL

Training/Testing Time 35.2h/0.02s -/98.0s 5.6h/0.02s

All methods are implemented in MATLAB R2017a on a Linux server. Note
that ISR does not need a training procedure. Training time of DECAMEL
includes all steps in Algorithm 1. Testing time is the average time of each probe
image searching over the gallery list.
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available. To this end, we now take n views (n ¼ 5; 4; 3; 2; 1)
on the MSMT17 dataset as testing views, so that we have
(15� n) training views. In the testing stage, similarly to the
above setting, we report the averaged results of the unseen
views. We fix the number of view prototypes J ¼ 10 and
show the results in Fig. 10.

From the above results, we can make two observations: 1)
When there are more training views, the performance
increases. This is because when there are more available
training views, the view prototypes can cover a wider range
of typical view-specific conditions, and thus more gene-
ralizable. 2) the performances of DECAMELVC are close to
DECAMEL, showing that although the testing views are not
seen in the training stage, the learned projections of view
prototypes can generalize to the unseen views. Note that
when the number of training views is 14 DECAMEL with
View Clustering (DECAMELVC) still has a gap of 1.5 percent
compared to DECAMEL. While this observation also indi-
cates that each view has its specific condition, DECAMELVC

thus strikes a balance where the ability to preciselymodel the
view-specific condition is compromised for better generaliz-
ability. Moreover, we could infer from the above two obser-
vations that in real-world large-scale problems where there
would be much more available camera views, the curve
could be further extrapolated and we can expect that the
performance of DECAMELVC could further approximate
DECAMEL, i.e., the generalizability of DECAMELVC in
large-scale applications shall be further improved.

6 CONCLUSION AND DISCUSSION

In this work, we present a novel approach for unsupervised
Re-ID by formulating it as an unsupervised asymmetric
metric learning problem. We propose a novel unsupervised
loss function to produce a deep framework DECAMEL,
which learns the asymmetric metric and embeds it into a
deep feature learning network by end-to-end learning. The
experiments show that our model can outperform the
related unsupervised Re-ID models.

The analysis and experimental results suggest the
effectiveness of the asymmetric modelling in unsupervised
Re-ID. We note that the asymmetric modelling could be
extensively embedded into other modelling strategies in
unsupervised Re-ID, e.g., designing view-specific features,
learning unsupervised asymmetric metrics and learning
view-specific dictionaries. Our work also suggests the poten-
tial of unsupervised metric learning in Re-ID, especially that
based on cross-view clustering. A future direction could be
exploring the behaviour of asymmetric modelling in front of
a view-imbalance problem, where the number of samples in
each camera view is largely imbalanced, which could be nec-
essary. Deriving theoretical guarantees on the robustness
against the view-imbalance problem could further perfect
the asymmetric modelling theoretically.

ACKNOWLEDGMENTS

This work was supported partially by the National
Key Research and Development Program of China
(2016YFB1001002), NSFC(61522115, 61661130157, 61472456,
U1611461), Guangdong Province Science and Technology
Innovation Leading Talents (2016TX03X157), and the Royal
Society Newton Advanced Fellowship (NA150459).

REFERENCES

[1] A. Bedagkar-Gala and S. K. Shah, “A survey of approaches and
trends in person re-identification,” Image and Vision Computing,
vol. 32, pp. 270–286, 2014.

[2] R. Vezzani, D. Baltieri, and R. Cucchiara, “People reidentification
in surveillance and forensics: A survey,” ACM Comput. Surveys,
vol. 46, 2013, Art. no. 46.

[3] Y.-C. Chen, X. Zhu, W.-S. Zheng, and J.-H. Lai, “Person re-
identification by camera correlation aware feature augmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 2, pp. 392–408,
Feb. 2018.

[4] C. Liu, S. Gong, C. Loy, and X. Lin, “Person re-identification:What fea-
tures are important?” inProc. Eur. Conf. Comput. Vis., 2012, pp. 391–401.

[5] C. Su, F. Yang, S. Zhang, Q. Tian, L. S. Davis, and W. Gao,
“Multi-task learning with low rank attribute embedding for
person re-identification,” in Proc. IEEE Int. Conf. Comput. Vis.,
2015, pp. 3739–3747.

[6] Z. Shi, T. M. Hospedales, and T. Xiang, “Transferring a semantic
representation for person re-identification and search,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 4184–4193.

[7] I. Kviatkovsky, A. Adam, and E. Rivlin, “Color invariants for person
reidentification,” IEEE Trans. Pattern Anal.Mach. Intell., vol. 35, no. 7,
pp. 1622–1634, Jul. 2013.

[8] R. Zhao, W. Oyang, and X. Wang, “Person re-identification by
saliency learning,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39,
no. 2, pp. 356–370, Feb. 2017.

[9] D. Chen, Z. Yuan, G. Hua, N. Zheng, and J. Wang, “Similarity
learning on an explicit polynomial kernel feature map for person
re-identification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2015, pp. 1565–1573.

[10] T. Matsukawa, T. Okabe, E. Suzuki, and Y. Sato, “Hierarchical
gaussian descriptor for person re-identification,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2016, pp. 1363–1372.

[11] Y. Shen, W. Lin, J. Yan, M. Xu, J. Wu, and J. Wang, “Person
re-identification with correspondence structure learning,” in Proc.
IEEE Int. Conf. Comput. Vis., 2015, pp. 3200–3208.

[12] A. Das, A. Chakraborty, and A. K. Roy-Chowdhury, “Consistent
re-identification in a camera network,” in Proc. Eur. Conf. Comput.
Vis., 2014, pp. 330–345.

[13] B. Ma, Y. Su, and F. Jurie, “Bicov: A novel image representation
for person re-identification and face verification,” in Proc. British
Mach. Vis. Conf., 2012, pp. 57.1–57.11.

[14] A.Mignon and F. Jurie, “Pcca: A new approach for distance learning
from sparse pairwise constraints,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2012, pp. 2666–2672.

TABLE 10
Comparative Results in the View-Extendable Setting

Method AML Dic DECAMELVC

Market-1501 41.57(15.01) 43.82(18.19) 56.50(29.99)
MSMT17 19.77(5.87) 21.04(6.00) 26.42(8.75)

The performances of Rank-1 accuracy (MAP) are only of all the unseen views
(see the text in Section 5.5).

Fig. 10. Performances of DECAMELVC in the view-extendable setting in
the MSMT17 dataset. We fix J ¼ 10.

YU ET AL.: UNSUPERVISED PERSON RE-IDENTIFICATION BY DEEP ASYMMETRIC METRIC EMBEDDING 971

Authorized licensed use limited to: Stanford University. Downloaded on October 01,2021 at 07:23:29 UTC from IEEE Xplore.  Restrictions apply. 



[15] W.-S. Zheng, S. Gong, and T. Xiang, “Reidentification by relative
distance comparison,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35,
no. 3, pp. 653–668,Mar. 2013.

[16] Z. Li, S. Chang, F. Liang, T. S.Huang, L. Cao, and J. R. Smith, “Learning
locally-adaptive decision functions for person verification,” in Proc.
IEEEConf. Comput. Vis. PatternRecognit., 2013, pp. 3610–3617.

[17] S. Pedagadi, J. Orwell, S. Velastin, and B. Boghossian, “Local fisher
discriminant analysis for pedestrian re-identification,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2013, pp. 3318–3325.

[18] F. Xiong, M. Gou, O. Camps, andM. Sznaier, “Person re-identification
using kernel-based metric learning methods,” in Proc. Eur. Conf.
Comput. Vis., 2014, pp. 1–16.

[19] S. Liao, Y. Hu, X. Zhu, and S. Z. Li, “Person re-identification by local
maximal occurrence representation and metric learning,” in Proc.
IEEEConf. Comput. Vis. Pattern Recognit., 2015, pp. 2197–2206.

[20] M. Koestinger, M. Hirzer, P. Wohlhart, P. M. Roth, and H. Bischof,
“Large scale metric learning from equivalence constraints,” in Proc.
IEEEConf. Comput. Vis. Pattern Recognit., 2012, pp. 2288–2295.

[21] S. Paisitkriangkrai, C. Shen, and A. van den Hengel, “Learning
to rank in person re-identification with metric ensembles,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015,
pp. 1846–1855.

[22] L. Zhang, T. Xiang, and S. Gong, “Learning a discriminative null
space for person re-identification,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2016, pp. 1239–1248.

[23] D. Chen, Z. Yuan, B. Chen, and N. Zheng, “Similarity learning
with spatial constraints for person re-identification,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2016, pp. 1268–1277.

[24] T. Wang, S. Gong, X. Zhu, and S. Wang, “Person re-identification
by discriminative selection in video ranking,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 38, no. 12, pp. 2501–2514, Dec. 2016.

[25] H. Wang, S. Gong, X. Zhu, and T. Xiang, “Human-in-the-loop
person re-identification,” in Proc. Eur. Conf. Comput. Vis., 2016,
pp. 405–422.

[26] L. An, M. Kafai, S. Yang, and B. Bhanu, “Person reidentification
with reference descriptor,” IEEE Trans. Circuits Syst. Video
Technol., vol. 26, no. 4, pp. 776–787, Apr. 2016.

[27] M. Hirzer, P. Roth, M. K€ostinger, and H. Bischof, “Relaxed pairwise
learned metric for person re-identification,” Proc. Eur. Conf. Comput.
Vis., 2012, pp. 780–793.

[28] Y.-C. Chen, W.-S. Zheng, J.-H. Lai, and P. Yuen, “An asymmetric
distance model for cross-view feature mapping in person
re-identification,” IEEE Trans. Circuits Syst. Video Technol., vol. 27,
no. 8, pp. 1661–1675, Aug. 2016.

[29] W. Li, R. Zhao, T. Xiao, and X.Wang, “Deepreid: Deep filter pairing
neural network for person re-identification,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2014, pp. 152–159.

[30] L. Wu, C. Shen, and A. van den Hengel, “Deep linear discriminant
analysis on fisher networks: A hybrid architecture for person
re-identification,” Pattern Recognit., vol. 65, pp. 238–250, 2017.

[31] E. Ahmed, M. Jones, and T. K. Marks, “An improved deep learning
architecture for person re-identification,” inProc. IEEEConf. Comput.
Vis. Pattern Recognit., 2015, pp. 3908–3916.

[32] T. Xiao, H. Li, W. Ouyang, and X. Wang, “Learning deep feature
representations with domain guided dropout for person
re-identification,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2016, pp. 1249–1258.

[33] D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Deep metric learning for person
re-identification,” in Proc. 22nd Int. Conf. Pattern Recognit., 2014,
pp. 34–39.

[34] S. Wu, Y.-C. Chen, X. Li, A.-C. Wu, J.-J. You, and W.-S. Zheng, “An
enhanced deep feature representation for person re-identification,”
inProc. IEEEWinter Conf. Appl. Comput. Vis., 2016, pp. 1–8.

[35] S.-Z. Chen, C.-C. Guo, and J.-H. Lai, “Deep ranking for person
re-identification via joint representation learning,” IEEE Trans.
Image Process., vol. 25, no. 5, pp. 2353–2367, May 2016.

[36] F. Wang, W. Zuo, L. Lin, D. Zhang, and L. Zhang, “Joint learning
of single-image and cross-image representations for person
re-identification,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2016, pp. 1288–1296.

[37] D. Cheng, Y. Gong, S. Zhou, J. Wang, and N. Zheng, “Person
re-identification by multi-channel parts-based cnn with improved
triplet loss function,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2016, pp. 1335–1344.

[38] R. R. Varior, M. Haloi, and G. Wang, “Gated siamese convolutional
neural network architecture for human re-identification,” in Proc.
Eur. Conf. Comput. Vis., 2016, pp. 791–808.

[39] H. Liu, J. Feng, M. Qi, J. Jiang, and S. Yan, “End-to-end comparative
attention networks for person re-identification,” IEEE Trans. Image
Process., vol. 26, no. 7, pp. 3492–3506, Jul. 2017.

[40] C. Su, S. Zhang, J. Xing, W. Gao, and Q. Tian, “Deep attributes
driven multi-camera person re-identification,” in Proc. Eur. Conf.
Comput. Vis., 2016, pp. 475–491.

[41] X. Wang, W. S. Zheng, X. Li, and J. Zhang, “Cross-scenario transfer
person reidentification,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 26, no. 8, pp. 1477–1460, Aug. 2016.

[42] M. Farenzena, L. Bazzani, A. Perina, V. Murino, and M. Cristani,
“Person re-identification by symmetry-driven accumulation of
local features,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2010, pp. 2360–2367.

[43] D. S. Cheng, M. Cristani, M. Stoppa, L. Bazzani, and V. Murino,
“Custom pictorial structures for re-identification,” in Proc. British
Mach. Vis. Conf., 2011, pp. 68.1–68.11.

[44] R. Zhao,W. Ouyang, and X.Wang, “Unsupervised salience learning
for person re-identification,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2013, pp. 3586–3593.

[45] H. Wang, S. Gong, and T. Xiang, “Unsupervised learning of
generative topic saliency for person re-identification,” in Proc.
British Mach. Vis. Conf., 2014.

[46] G. Lisanti, I. Masi, A. D. Bagdanov, and A. Del Bimbo, “Person
re-identification by iterative re-weighted sparse ranking,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 37, no. 8, pp. 1629–1642,
Aug. 2015.

[47] H. Wang, X. Zhu, T. Xiang, and S. Gong, “Towards unsupervised
open-set person re-identification,” in Proc. IEEE Int. Conf. Image
Process., 2016, pp. 769–773.

[48] E. Kodirov, T. Xiang, and S. Gong, “Dictionary learning with iterative
laplacian regularisation for unsupervised person re-identification,”
inProc. BritishMach. Vis. Conf., 2015, pp. 44.1–44.12.

[49] P. Peng, T. Xiang, Y. Wang, M. Pontil, S. Gong, T. Huang, and
Y. Tian, “Unsupervised cross-dataset transfer learning for person
re-identification,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2016, pp. 1306–1315.

[50] E. Kodirov, T. Xiang, Z. Fu, and S. Gong, “Person re-identification
by unsupervised l1 graph learning,” in Proc. Eur. Conf. Comput.
Vis., 2016, pp. 178–195.

[51] B. Kulis, et al., “Metric learning: A survey,” in Foundations and
Trends� in Machine Learning. Hanover, MA, USA: Now Publishers
Inc., 2013.

[52] H.-X. Yu, A. Wu, and W.-S. Zheng, “Cross-view asymmetric metric
learning for unsupervised person re-identification,” in Proc. IEEE
Int. Conf. Comput. Vis., 2017, pp. 994–1002.

[53] H. Fan, L. Zheng, C. Yan, and Y. Yang, “Unsupervised person re-
identification: Clustering and fine-tuning,” ACM Trans. Multime-
dia Comput., Commun., Appl. (TOMM), vol. 14, no. 4, p. 83, 2018.

[54] J. Ye, Z. Zhao, and H. Liu, “Adaptive distance metric learning for
clustering,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2007, pp. 1–7.

[55] C. Qin, S. Song, G. Huang, and L. Zhu, “Unsupervised neighborhood
component analysis for clustering,” Neurocomputing, vol. 168, no. C,
pp. 609–617,Nov. 2015.

[56] R. G. Cinbis, J. Verbeek, and C. Schmid, “Unsupervised metric
learning for face identification in tv video,” in Proc. IEEE Int. Conf.
Comput. Vis., 2011, pp. 1559–1566.

[57] J. Jiang, B. Wang, and Z. Tu, “Unsupervised metric learning by
self-smoothing operator,” in Proc. IEEE Int. Conf. Comput. Vis.,
2011, pp. 794–801.

[58] C. Kang, S. Xiang, S. Liao, C. Xu, and C. Pan, “Learning consistent
feature representation for cross-modal multimedia retrieval,”
IEEE Trans. Multimedia, vol. 17, no. 3, pp. 370–381, Mar. 2015.

[59] Y. Gong, Q. Ke, M. Isard, and S. Lazebnik, “A multi-view
embedding space for modeling internet images, tags, and their
semantics,” Int. J. Comput. Vis., vol. 106, no. 2, pp. 210–233,
Jan. 2014.

[60] N. Rasiwasia, J. Costa Pereira, E. Coviello, G. Doyle, G. R. Lanckriet,
R. Levy, and N. Vasconcelos, “A new approach to cross-modal
multimedia retrieval,” in Proc. 18th ACM Int. Conf. Multimedia, 2010,
pp. 251–260.

[61] D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor, “Canonical
correlation analysis: An overview with application to learning
methods,”Neural Comput., vol. 16, no. 12, pp. 2639–2664, Dec. 2004.

[62] R. Rosipal andN. Kr€amer, “Overviewand recent advances in partial
least squares,” in Proc. Int. Conf. Subspace Latent Struct. Feature Select.,
2005, pp. 34–51.

972 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 42, NO. 4, APRIL 2020

Authorized licensed use limited to: Stanford University. Downloaded on October 01,2021 at 07:23:29 UTC from IEEE Xplore.  Restrictions apply. 



[63] D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Deep metric learning for person
re-identification,” in Proc. 22nd Int. Conf. Pattern Recognit., 2014,
pp. 34–39.

[64] J. Hu, J. Lu, and Y.-P. Tan, “Discriminative deep metric learning
for face verification in the wild,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2014, pp. 1875–1882.

[65] E. Hoffer and N. Ailon, “Deep metric learning using triplet
network,” in Proc. Int. Workshop Similarity-Based Pattern Recognit.,
2015, pp. 84–92.

[66] H. Oh Song, Y. Xiang, S. Jegelka, and S. Savarese, “Deep metric
learning via lifted structured feature embedding,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2016, pp. 4004–4012.

[67] J. Lu, G. Wang, W. Deng, P. Moulin, and J. Zhou, “Multi-manifold
deep metric learning for image set classification,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1137–1145.

[68] J. Yu, X. Yang, F. Gao, and D. Tao, “Deep multimodal distance
metric learning using click constraints for image ranking,” IEEE
Trans. Cybern., vol. 47, no. 12, pp. 4014–4024, Dec. 2016.

[69] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding
for clustering analysis,” in Proc. 33rd Int. Conf. Int. Conf. Mach. Learn.
- Vol. 48, 2016, pp. 478–487.

[70] J. Yang, D. Parikh, and D. Batra, “Joint unsupervised learning of
deep representations and image clusters,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 5147–5156.

[71] Z. Wang, S. Chang, J. Zhou, M.Wang, and T. S. Huang, “Learning a
task-specific deep architecture for clustering,” in Proc. 2016 SIAM
Int. Conf.Mining, 2016, pp. 369–377.

[72] J. A.Hartigan,Clustering Algorithms. Hoboken,NJ, USA:Wiley, 1975.
[73] V. N. Vapnik and V. Vapnik, Statistical Learning Theory. New York,

NY, USA: Wiley, 1998.
[74] C. H. Q. Ding and X. He, “On the equivalence of nonnegative

matrix factorization and spectral clustering,” in Proc. 2005 SIAM
Int. Conf. Data Mining, 2005, pp. 606–610.

[75] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative
adversarial networks,” in Proc. 34th Int. Conf. Mach. Learn., 2017,
pp. 214–223.

[76] D. Berthelot, T. Schumm, and L. Metz, “BEGAN: Boundary
equilibrium generative adversarial networks,” arXiv preprint
arXiv:1703.10717, 2017.

[77] R. He, X. Wu, Z. Sun, and T. Tan, “Wasserstein cnn: Learning
invariant features for nir-vis face recognition,” IEEE Trans. Pattern
Anal. Mach. Intell., 2018, pp. 1–1.

[78] D. Gray, S. Brennan, and H. Tao, “Evaluating appearance models
for recognition, reacquisition, and tracking,” in Proc. IEEE Int.
Workshop Perform. Eval. Tracking Surveillance (PETS), vol. 3, no. 5,
pp. 1–7, 2007.

[79] W. Li, R. Zhao, and X. Wang, “Human reidentification with
transferred metric learning,” in Proc. 11th Asian Conf. Comput.
Vis.- Vol. Part I, 2012.

[80] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian,
“Scalable person re-identification: A benchmark,” in Proc. IEEE
Int. Conf. Comput. Vis., 2015, pp. 1116–1124.

[81] L. Zheng, Z. Bie, Y. Sun, J. Wang, C. Su, S. Wang, and Q. Tian,
“Mars: A video benchmark for large-scale person re-identi-
fication,” in Proc. Eur. Conf. Comput. Vis., 2016, pp. 868–884.

[82] L. Wei, S. Zhang, W. Gao, and Q. Tian, “Person transfer gan to
bridge domain gap for person re-identification,” Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 79–88.

[83] H. Lee, C. Ekanadham, and A. Y. Ng, “Sparse deep belief net
model for visual area v2,” in Proc. 20th Int. Conf. Neural Inf. Process.
Syst., 2008, pp. 873–880.

[84] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2016, pp. 770–778.

[85] M. Hirzer, C. Beleznai, P. M. Roth, and H. Bischof, “Person
re-identification by descriptive and discriminative classification,”
in Proc. Scandinavian Conf. Image Anal., 2011, pp. 91–102.

[86] D. Baltieri, R. Vezzani, and R. Cucchiara, “3dpes: 3d people dataset
for surveillance and forensics,” in Proc. Joint ACMWorkshop Human
Gesture Behavior Understanding, 2011, pp. 59–64.

[87] W. S. Zheng, S. Gong, and T. Xiang, “Associating groups of people,”
inProc. BritishMach. Vis. Conf., vol. 2, no. 6, 2009.

[88] Y. Kawanishi, Y.Wu,M.Mukunoki, andM.Minoh, “Shinpuhkan2014:
A multi-camera pedestrian dataset for tracking people across multiple
cameras,” inProc. 20th Korea-Japan JointWorkshop Frontiers Comput. Vis.,
vol. 5, no. 7, 2014.

[89] Z. Zheng, L. Zheng, and Y. Yang, “Unlabeled samples generated
by gan improve the person re-identification baseline in vitro,” in
Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 3774–3782.

[90] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi,
“Performancemeasures and a data set formulti-target, multi-camera
tracking,” in Proc. Eur. Conf. Comput. Vis. Workshop Benchmarking
Multi-Target Tracking, 2016, pp. 17–35.

[91] A. Vedaldi and K. Lenc, “Matconvnet: Convolutional neural
networks for matlab,” in Proc. 23rd ACM Int. Conf. Multimedia,
2015, pp. 689–692.

[92] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture
for fast feature embedding,” in Proc. 22nd ACM Int. Conf.Multimedia,
2014, pp. 675–678.

Hong-Xing Yu received the bachelor’s degree in
communication engineering from Sun Yat-Sen
University, in 2017. He is working toward the
MS degree in the School of Data and Computer
Science, SunYat-SenUniversity. His research inter-
est includes computer vision andmachine learning.

Ancong Wu received the bachelor’s degree in
intelligence science and technology from Sun
Yat-Sen University, in 2015. He is working toward
the PhD degree in the School of Electronics and
Information Technology, Sun Yat-sen University.
His research interests include computer vision
and machine learning. He is currently focusing on
the topic of person re-identification.

Wei-Shi Zheng is nowa professor with SunYat-sen
University. His research interests include person
association and activity understanding in visual
surveillance. He has now published more than 100
papers, including more than 70 publications in main
journals (the IEEE Transactions on Pattern Analysis
and Machine Intelligence, the IEEE Transactions
on Neural Networks, the IEEE Transactions on
Image Processing, PR) and top conferences (ICCV,
CVPR, IJCAI, AAAI). He served as an area chair for
AVSS 2012, ICPR 2018 andBMVC2018/2019, and

a senior PC for IJCAI 2019. He has joined Microsoft Research Asia Young
Faculty Visiting Programme. He is a recipient of Excellent Young Scientists
Fund of the National Natural Science Foundation of China, and a recipient of
Royal Society-Newton Advanced Fellowship, United Kingdom. He is an
associate editor of thePatternRecognition Journal.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

YU ET AL.: UNSUPERVISED PERSON RE-IDENTIFICATION BY DEEP ASYMMETRIC METRIC EMBEDDING 973

Authorized licensed use limited to: Stanford University. Downloaded on October 01,2021 at 07:23:29 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


