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Abstract

While discriminative local features have been shown ef-

fective in solving the person re-identification problem, they

are limited to be trained on fully pairwise labelled data

which is expensive to obtain. In this work, we overcome this

problem by proposing a patch-based unsupervised learn-

ing framework in order to learn discriminative feature from

patches instead of the whole images. The patch-based

learning leverages similarity between patches to learn a

discriminative model. Specifically, we develop a PatchNet

to select patches from the feature map and learn discrimi-

native features for these patches. To provide effective guid-

ance for the PatchNet to learn discriminative patch fea-

ture on unlabeled datasets, we propose an unsupervised

patch-based discriminative feature learning loss. In ad-

dition, we design an image-level feature learning loss to

leverage all the patch features of the same image to serve

as an image-level guidance for the PatchNet. Extensive ex-

periments validate the superiority of our method for unsu-

pervised person re-id. Our code is available at https:

//github.com/QizeYang/PAUL.

1. Introduction

Person re-identification (re-id) aims to match the un-

derlying identity of a person from non-overlapping cam-

era views. Because of its important applications in secu-

rity and surveillance, person re-id has been drawing lots

of attention from both academia and industry. In the past

decades, most of the existing re-id works focus on dis-

tance metric learning [16, 3, 45, 54, 38, 39, 36] and fea-

ture learning [10, 20, 53, 2]. Particularly, deep learning

[18, 28, 34, 43, 40, 37, 1, 5, 25, 55] has been adopted to

re-id community and achieved significant progress. How-

ever, most existing re-id methods require tremendous la-
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Figure 1. Some image samples of MSMT17 [40] and Market-1501

[53]. It is easier to find that if two images are similar, then their

patches would probably also be similar. And the gap of the similar

patches would be smaller than the similar images

beled dataset which limits its scalability and usability in the

real-world application scenario, because it is expensive and

difficult to manually label a large scale dataset. Some re-

cent works focus on using unsupervised learning to address

the scalability problem by improving the hand-crafted fea-

tures [10, 8, 24, 20], clustering [46, 47, 7]. State-of-the-art

unsupervised re-id methods transfer the knowledge from a

labelled source re-id dataset [40, 37, 1, 5, 25]. However,

these methods are limited on the image level while the gaps

of images between different datasets are significant. Thus

they still yield weak performances.

While the label information of unlabelled data is absent,

we find an interesting observation that as shown in Figure 1,

if two images are similar, then their patches would proba-

bly also be similar. Based on this observation, a patch-based

discriminative feature learning model would be more gen-

eralizable and can learn discriminative patch feature among

different datasets. This inspires us to develop a patch-

based unsupervised person re-id model to learn discrimina-

tive patch feature instead of image feature. Although some
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part-based person re-id models [31, 50, 49, 27, 52, 29] have

been proposed to study local discriminative feature and out-

perform those global feature learning methods [30, 12, 48],

it is still a largely unsolved problem for person re-id to ex-

tract discriminative local features on unlabelled data.

In this work, we develop a patch-based unsupervised

learning framework (PAUL) for person re-id, and this

framework is designed specially for learning discrimina-

tive patch feature on unlabelled datasets, which can be

divided in three parts as follows. A patch discrimina-

tive feature learning network (PatchNet) is designed to se-

lect patches from the feature map and learn discrimina-

tive feature for each patch. In PatchNet, we propose a

patch-based discriminative feature learning loss (PEDAL)

to guide the PatchNet for learning the patch feature on un-

labeled datasets by pulling the features of similar patches

together and pushing the dissimilar patches away. Simulta-

neously, we generate the surrogate positive samples by ran-

dom image transformation for each image and mine hard

negative samples in a mini-batch by cyclic ranking to com-

pose a triplet, and then we develop an image-level patch

feature learning loss (IPFL) to leverage all the patch fea-

tures of the same image to provide image-level guidance.

The main contributions of this work can be summarized

as follows: (1) We demonstrate for the first time how to

effectively extract discriminative patch-based local feature

on unlabelled data for unsupervised person re-id. (2) To

overcome the problem of lacking an effective guidance on

unlabeled datasets, we propose PEDAL and IPFL to provide

effective guidance for a deep model to train so it can learn

discriminative features for unsupervised re-id.

We have evaluated the proposed method on two

large-scale datasets including Market-1501 [53] and

DukeMTMC-reID [26]. Our method significantly outper-

forms the existing methods for unsupervised person re-id.

2. Related Work

Supervised person re-id. Most existing person re-id meth-

ods employ supervised learning and base on learning dis-

tance metric or subspace [16, 3, 45, 54, 38, 39, 36], learn-

ing view-invariant discriminative feature [10, 20, 53, 2] or

deep learning [18, 28, 34, 43, 19, 31]. However, supervised

learning methods rely on substantial labeled training data

and manually labeling are time-consuming and may not be

reliable, which limits the scalability and practicability of su-

pervised learning methods.

Particularly, some part based model [31, 50, 49, 27, 52,

29] for person re-id has been studied for tackling the mis-

alignment of the person image or learning local features.

These part based person re-id methods identify that the lo-

cal feature learning methods is more generalizable and ef-

fective to the unseen identities. However, these methods are

designed for supervised learning. Although the pre-trained

part based model may be generalizable, these methods lack

of an effective guidance on unlabeled datasets.

Unsupervised person re-id. Although Handcrafted ap-

pearance feature [10, 8, 24, 20] can be directly applied

for unsupervised person re-id, the performance is typi-

cally weak because it is very challenging to design a view-

invariant feature. To achieve the view-invariance, recent

methods attempt to improve the feature [51, 35, 22, 15, 14],

or mine underlying labels in the unlabelled data [7, 23, 46,

47]. In particular, Yu et al. [46, 47] propose an unsupervised

asymmetric distance metric learning based on asymmetric

K-means clustering to achieve the view-invariance. How-

ever, the pseudo labels of the images obtained by clustering

may be noisy, because it may assign the same pseudo label

to similar images with different identities, making it more

difficult to distinguish the similar person.

Recently, unsupervised person re-id by cross-domain

transfer learning [40, 37, 1, 5, 25, 55] is proposed to lever-

age other labeled datasets to improve the performance of

model on the target dataset. Particularly, Wei et al. [40]

propose to use GAN [9] to bridge the domain gap for per-

son re-id. Wang et al. [37] propose to share the source

domain knowledge through attributes learned from labeled

source data and transfer such knowledge to unlabeled target

data. The attribute labels that describe local sematic infor-

mation is somewhat similar to the appearance information

of image patches, while our proposed method does not re-

quire the additional attribute labels. Bak et al. [1] propose

a three-step domain adaptation technique that takes advan-

tage of synthetic data. However, the image adaptation pro-

cess makes it complex to generalize a model to a new unla-

beled dataset. Furthermore, it is difficult for these transfer

learning to generalize because the gaps of the person im-

ages between different datasets are significant. In contrast,

our method learns discriminative features on the patch level

which is more straightforward and generalizable.

3. Method

3.1. Overview of the PAUL

In this work, we present a novel patch-based discrim-

inative feature learning framework to utilize the common

patches of different datasets and mine the discriminative

features on an unlabeled dataset. This framework includes

a PatchNet that aims to learn generalizable and discrimi-

native patch feature, and two complementary losses which

provide guidance for the PatchNet on the unlabeled dataset,

as shown in Figure 2.

The PatchNet is mainly composed of a CNN backbone

and the patch generation network (PGN) which can gener-

ate different patches from the feature map. Then the net-

work is separated into several branches, appended with an

average pooling layer and a convolutional layer for each
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Figure 2. An illustration of the PAUL. The PatchNet is mainly composed of a CNN backbone and the patch generation network. First, we

generate surrogate positive samples by using random image transformations. Next, we generate M patches for each feature map by using

patch generation network (PGN) which can be split into three parts including the localization network (LN), the patch sampling grid, and

the sampler. The PEDAL is designed to pull similar patches together and push the dissimilar patches. The IPFL is designed to pull the real

sample and the surrogate positive samples together while pushing hard negative samples away.

branch. The PatchNet is pre-trained on the other labeled

dataset initially so as to leverage the shared appearance

knowledge of common image patches. Although the PGN

is not our main contribution, it is the foundation of our

method, so we introduce the PGN firstly in Sec. 3.2.

In order to provide effective guidance for PatchNet to

learn more discriminative patch feature on the unlabeled

dataset, we propose a patch-based discriminative feature

learning loss (PEDAL) to pull similar patches together and

push the dissimilar patches away.

Simultaneously, we develop a image-level patch feature

learning loss (IPFL) to leverage all the patch features of the

same image to provide image-level guidance. Since there

are no label information available to compose a triplet on

the unlabeled dataset, we concatenate all the patch features

of the same image to mine hard negative samples in a mini-

batch by cyclic ranking, and generate the surrogate positive

samples for each image.

3.2. Patch Generation Network

We sample patches from a relatively small size feature

map instead of the image, because it is more efficient and

can reduce the computation and the complexity of the CNN

[31, 19]. To this end, we introduce a spatial transforma-

tion network [13] to form the PGN which can automatically

sample the patches from the feature map. As shown in Fig-

ure 2, the PGN can be split into three parts including a lo-

calization network (LN), patch sampling grids, and the sam-

pler. First, the LN takes the input feature map and predicts

M spatial locations parameterized by a set of affine trans-

formation parameters Θ = [θ1, . . . ,θm, . . . ,θM ]. The

LN is composed of a convolutional layer and two fully-

connected layers. We initialize the bias of the last fully-

connected layer of LN such that the patches are sampled

from different spatial regions and capture different cues for

(a)
Pull

Pull

Pull

push

push

push

push

push
push

(b) (c)

Figure 3. Illustration of discriminative feature learning on an un-

labeled dataset. Different color borders means different identities.

(a), (b) The person image can be divided into several patches. We

learn discriminative patch feature by pulling the features of similar

patches together and pushing dissimilar ones away. (c) In contrast,

if directly pulling the similar images together in the feature space,

visually similar person images with different identities would be

pulled closer, which blurs the identity information of the person

image. (Best viewed in color)

the person image at initial state. Then, each predicted trans-

formation parameter θm is used to compute a sampling grid,

which is a set of points where the input feature map should

be sampled to form the patches. The final step is sampling

such that we can get M patches for each image. We refer

the readers to [13] for more details.

3.3. Patch­based Discriminative Feature Learning

In this section, our goal is to guide the PatchNet to learn

discriminative patch feature on an unlabeled dataset. Note

that the PGN generates M patches for each image feature
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map and these different patches of the same image are lo-

cated at different spatial regions. These different regions

may contain different parts of body which have different

semantic information [31, 50, 49, 27, 29], so it is better to

encode these different patches of the same image by using

different CNN branches and perform discriminative feature

learning independently for different branches.

In supervised learning, we want the features of the same

class to be closer in feature space while staying far away

from other classes, so that the feature would be more dis-

criminative [21, 41]. Our novel unsupervised patch fea-

ture learning approach is patch-level discriminative learn-

ing. We propose to pull the similar patches close while

pushing those dissimilar patches away in feature space,

which is illustrated in Figure 3.

Let xm
i represents the feature of the m-th patch of the

i-th image in a mini-batch, we need to compare each un-

labeled patch to all the m-th patches of the other images

so as to discover the visually similar patches, which is

hardly tractable in the mini-batch optimization based deep

learning. Therefore, we maintain a patch feature memory

bank Wm for storing these patch features [44, 42]. Let

Wm = {wm
j }Nj=1, where N is the number of the training

images, for each wm
j , we update it during training on the

unlabeled dataset by

wm
j,t =

{

(1− l)×wm
j,t−1 + l × xm

j,t, t > 0,
xm
j,t, t = 0,

(1)

where t is the training epoch and l is the updating rate of

the wm
j,t, x

m
j,t is the up-to-date patch feature. Particularly,

t = 0 means that we initialize all the memory bank before

training on the unlabeled dataset, then keep updating batch-

by-batch by using Eq. 1 during training, so that the wm
j can

be the online approximation of xm
j [44, 42].

Now, for each xm
i , we can obtain a set Km

i of k nearest

patches of xm
i by computing the l2 pairwise distance with

{wm
j }Nj=1, then the PEDAL can be formulated as follows:

Lm
c = − log

∑

wm
j
∈Km

i
e−

s
2‖x

m
i −w

m
j ‖

2

2

∑N

j=1,j 6=i e
− s

2‖xm
i
−wm

j ‖
2

2

, (2)

where s is the scaling number. Minimizing Lm
c encourages

the model to pull similar patches Km
i close to xm

i while

pushing dissimilar patches {wm
j |wm

j /∈ Km
i } away from

xm
i in feature space. By this way, the model can learn

how to map those visually similar patches closer so as to

mine more visual consistent clues for these similar patches.

Hence, the feature of these patches would be more discrim-

inative.

Discussion. Compared to pulling the similar patches to-

gether, pulling the features of the similar person images to-

gether (as shown in Figure 3 (c)) would blur identity infor-

Target image

Ranking with other images in a mini-batch

Ranking list𝒩௜x௜
Top- 𝑟Top-1 nearest of x௜

Ranking with other images in a mini-batch

Figure 4. Illustration of the cyclic ranking. We compute the rank-

ing list Ni for the target image xi, Then we traverse the ranking

list Ni in order, and we compute the ranking list for xj ∈ Ni until

we find a hard negative sample. (Best viewed in color)

mation of person image, making it ineffective to distinguish

the similar images of different identities. In contrast, we

divide the person image into several patches, so that differ-

ent patches of the same image may contain different infor-

mation of the person. Pulling the similar patches together

could mine the latent discriminative clues for these simi-

lar patches, such as “yellow T-shirt” in Figure 3 (a). On

the other hand, pulling the similar patches together may

encounter the same problem as pulling the feature of the

whole image, getting difficult to distinguish these similar

patches. But the identity information is not simply encoded

in the feature of patches, more importantly in the combina-

tion of patches. That means even if some patches of dif-

ferent identities are pulled together, we still can distinguish

these identities by other patches. As shown in Figure 3 (a),

although the model pulls the features of the patches of dif-

ferent identities with a yellow T-shirt together, we still can

distinguish these pedestrians by the patches locating at the

trousers (Figure 3 (b)). This mechanism is similar to use

multi attributes to help identify the person.

3.4. Image­level Patch Feature Learning

We develop an image-level loss additionally to further

exploit image-level latent discriminative information which

could be mined with the help of the discriminative patch

features. An effective way is to minimize the intra-class

gap while simultaneously maximize the inter-class gap in

the feature space of the whole image. To this end, we in-

troduce a cyclic ranking to mine the hard negative samples

in a mini-batch, and we generate surrogate positive samples

via a series of image transformations. Then, we develop a

triplet-based loss function.

Mining hard negative samples in a mini-batch. Intu-

itively, if there are two image samples of the same iden-
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tity in a mini-batch, then they are probably among the mu-

tually nearest neighbors to each other. On the contrary, if

two samples in a mini-batch are not the mutual neighbors to

each other, this inconsistency indicates that they may have

different identities. Based on the above discussion, we de-

velop a cyclic ranking to mine hard negative samples in a

mini-batch which is illustrated in Figure 4. Given a mini-

batch of sample features {xi}
B
i=1, the ranking result of each

sample xi can be generated based on the pairwise similar-

ity measure. We use the l2 distance to measure the pairwise

similarities, and thus we can get the ranking list Ni of xi.

Then we traverse the ranking list Ni in order. For each neg-

ative sample candidate xj ∈ Ni, we use the same method

to compute the ranking list. Finally, if the xi is not the

top-r nearest neighbor of xj , then we argue that the xj is

likely to be a negative sample of xi. Furthermore, since

hard negative pairs are more effective to learn a discrimi-

native feature, we only consider the first (hardest) negative

sample candidate xj which matches the above condition.

We denote this negative candidate as ni.

Discussion. The probability of the images to be the same

identity in a mini-batch is very low when randomly sam-

pling a few images from the dataset which includes a large

number of images and identities [55], even when they are

the mutual neighbors. But this is not impossible. In other

words, it is difficult to estimate the likely binary label for

the mutual neighbors without further scrutinization. Hence,

we need a mechanism to determine the hard negative pair

with higher confidence. The cyclic ranking provides such

a mechanism to unsupervisedly mine the hard negative pair

with a simple yet reasonable principle, which is important in

the unsupervised discovery of the latent label information.

Surrogate positive samples. In [6], Dosovitskiy et al. pro-

pose using surrogate training data to learn discriminative

feature for CNN under unsupervised setting and declare

each set of transformed image patches to be a class. Sim-

ilarly, in our experiments, we define a family of random

transformation to generate the surrogate positive samples,

including crop, scaling, rotation, brightness, contrast, and

saturation of an image. Then we generate one surrogate

positive sample for each real sample. Compared to Doso-

vitskiy et al. [6], the difference is that we perform such ran-

dom transformation on images rather than image patches,

and for each training epoch, we randomly generate one sur-

rogate positive image for each anchor image to form a posi-

tive pair. Here, we give the definition of the IPFL as follows,

Lv = max {‖xi − pi‖2 − ‖xi − ni‖2 +m, 0} , (3)

where m is margin of the IPFL, pi is a surrogate positive

sample feature.

Market-1501 DukeMTMC-reID MSMT17

Figure 5. Some image examples of Market-1501, DukeMTMC-

reID and MSMT17 dataset. Images of each column represent the

same identity collected from different camera views.

3.5. Training the PatchNet on Unlabeled Dataset

As shown in Figure 2, we generate one surrogate positive

sample for each image by using a series of random transfor-

mations, these surrogate positive samples are only used for

computing IPFL. After that, the PGN generates M patches

based on the feature map for each image. Finally, we com-

pute the PEDAL for each patch and compute the IPFL for

each triplet. The total loss function for each image in a

mini-batch of our model can be formulated as

L = Lv + λ
1

M

M
∑

m=1

Lm
c , (4)

where λ controls the weight of the PEDAL.

4. Experiments and Analysis

4.1. Dataset and Evaluation Protocol

For validating the effectiveness of our proposed method,

we carried out experiments on two large scale person re-

id datasets, including Market-1501 [53], DukeMTMC-reID

[26]. These two datasets are large-scale and have vari-

ous variations including viewpoint change, occlusion, il-

lumination, pose, background clustering. Specifically, the

Market-1501 dataset contains 32668 images of 1501 iden-

tity, each of which was captured by at most six cameras.

All the person images were detected automatically from

video sequences. The DukeMTMC-reID dataset has 8 cam-

era and 36411 labeled images belonging to 1404 identities.

This dataset was constructed form the multi-camera track-

ing dataset DukeMTMC by random selection of manually

tracklet bounding boxes. We followed the standard train-

ing/test split and evaluated the single-query test evaluation

settings. For performance measurement, we used the cumu-

lative matching characteristic (CMC) and the mean Average

Precision (mAP).

4.2. Implementation Details

We chose the ResNet-50 [11] as our CNN backbone

model which is pre-trained on the ImageNet dataset [4], and

we removed the last fully-connected layer and the stride of

last residual block is set to 1. The dimension of the output
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Table 1. Performance (%) comparison on Market-1501 dataset.

Methods Rank-1 Rank-5 Rank-10 mAP

LOMO [20] 27.2 41.6 49.1 8.0

Bow [53] 35.8 52.4 60.3 14.8

UMDL [25] 34.5 52.6 59.6 12.4

PUL [7] 45.5 60.7 66.7 20.5

CAMEL [46] 54.5 - - 26.3

PTGAN [40] 38.6 - 66.1 -

SPGAN + LMP [5] 57.7 75.8 82.4 26.7

TJ-AIDL [37] 58.2 74.8 81.1 26.5

HHL [55] 62.2 78.8 84.0 31.4

DECAMEL [47] 60.2 76.0. 81.1 32.4

SyRI [1] 65.7 - - -

PAUL (Ours) 68.5 82.4 87.4 40.1

feature of each branch is 256. The patch generation net-

work (PGN) was initialized such that the feature map would

be divided into M equal-sized horizontal stripes. For the

patch-based discriminative feature learning loss (PEDAL),

we only considered the the top-10 (k = 10) nearest patches

of other images and the updating rate l of the memory bank

was set to 0.1. The scaling number s was set to 10 for

DukeMTMC-reID and 30 for Market-1501, respectively, to

ensure the convergence of the model as suggested in [33].

For the image-level patch feature learning loss (IPFL), we

generated one surrogate positive sample for each image, r
is set to 3, and the margin is set as 2 empirically. The

weight λ of Lc is set to 2. We used the MSMT17 [40]

to pre-train the PatchNet. Then we fixed the PGN and we

did not use the MSMT17 again during training on other

dataset. During training on unlabeled dataset, the images

were randomly sampled from the training set of dataset and

resized to 384× 128. Each mini-batch was composed of 40

real samples, and 40 surrogate positive samples additionally

which were only used for computing the IPFL. We used the

SGD [32] as our optimization algorithm, and the learning

rate was set to 0.0001 initially and decayed by 0.1 every 50

epochs. We trained the model on the unlabeled datasets for

60 epochs. During testing, we concatenated the patch fea-

tures of the same image together to compute the pairwise

distance. The random transformations we used to generate

the surrogate positive samples are as follows:

• Crop: randomly cropping each image into a size from

70% to 95% of the original size;

• Rotation: randomly rotating of the image by an angle

up to 10 degrees;

• Contrast, saturation, and brightness: randomly chang-

ing it from 80% to 120% of the original image for each

image;

4.3. Comparison with the State­of­the­art

We compared the proposed method with hand-crafted

features (including LOMO [20], BoW [53] and UMDL

[25]) and the state-of-the-art unsupervised learning methods

for person re-id. The results of the comparisons on Market-

1501 dataset are presented on Table 1 and the results on

Table 2. Performance (%) comparison on DukeMTMC dataset.

Methods Rank-1 Rank-5 Rank-10 mAP

LOMO [20] 12.3 21.3 26.6 4.8

Bow [53] 17.1 28.8 34.9 8.3

UMDL [25] 18.5 31.4 37.6 7.3

PUL [7] 30.0 43.4 48.5 16.4

PTGAN [40] 27.4 - 50.7 -

SPGAN + LMP [5] 46.4 62.3 68.0 26.2

TJ-AIDL [37] 44.3 59.6 65.0 23.0

HHL [55] 46.9 61.0 66.7 27.2

PAUL (Ours) 72.0 82.7 86.0 53.2

DukeMTMC-reID dataset are shown in Table 2. We can see

that our proposed method outperforms the compared meth-

ods significantly on both datasets.

Specifically, the clustering-based methods (PUL [7],

CAMEL [46] and DECAMEL [47]) may assign the same

pseudo label to similar images of different identities, On

the contrary, even though some patches of the image pull

some patches of other identities together, there are still other

patches of the image to provide discrimination.

Compared with transfer learning methods (including PT-

GAN [40], SPGAN+LMP [5],TJ-AIDL [37], HHL [55]

and SyRI [1]), our proposed method outperforms the these

methods with a significantly margin. The main reason

can fall into two aspects. (1) The gap between the im-

ages of the source and target domains is larger compared

to the gap between image patches, so it is harder to trans-

fer an image based feature learning model to the target do-

main. (2) The PatchNet can learn discriminative features

by optimizing the PEDAL and the IPFL on an unlabeled

dataset. We note that the SyRI [1] uses the CUHK03 [18],

DukeMTMC-reID and synthetic data (totally 3379 identity)

to train their model by a three-step domain adaptation, while

our proposed method can be directly trained on the unla-

beled dataset without bells and whistles. Also note that

TJ-AIDL [37] is somewhat related to the patch-based dis-

criminative feature learning, because the similar patches of

different images are likely sharing the same attribute infor-

mation. However, TJ-ALDL requires extra attribute labels,

limiting its scalability.

In summary, our method can learn the discriminative fea-

tures in a patch level which is more generalizable among

different datasets. In contrast, existing methods could not

achieve this goal. In addition, with the guidance of the

PEDAL and the IPFL, the PatchNet can be conveniently

trained on an unlabeled dataset.

4.4. Ablation Study

We perform abaltion study to evaluate the effectiveness

of each component in our method. The experimental results

are reported in Table 3. The comparison of the “ResNet-50”

and “PatchNet” validates that patch-based feature learning

method is more generalizable and it can learn more discrim-

inative feature on an unlabeled dataset because the patches

are common among different datasets. We also evaluate the
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Figure 6. A visualization of the nearest patches in the patch-based discriminative feature learning loss (Eq. (2)). We also show the whole

images corresponding to the patches. Blue bounding box indicates the same identity. Red bounding box indicates the location of the patch.

Table 3. Ablation study (%). The results of “ResNet-50” and

“PatchNet” mean we directly test the model (pre-trained on

MSMT17) without training on unlabeled datasets.

Methods
Market-1501 DukeMTMC-reID

Rank-1 mAP Rank-1 mAP

ResNet-50 [11] † 46.6 22.7 52.6 33.1

ResNet-50 [11] + Lc ‡ 25.6 11.8 29.5 15.4

PatchNet (Baseline) 59.3 31.0 65.7 45.6

PatchNet+Lc 66.2 38.0 70.6 52.1

PatchNet+Lv 65.4 37.6 67.1 48.0

PatchNet+Lv + Lc (PAUL) 68.5 40.1 72.0 53.2
† Image-level feature learning.
‡ Here, Lc means pulling the features of the similar images together.

PEDAL and the IPFL separately and jointly to validate its

effectiveness. We can observe that our proposed method

perform better than baseline model with a significantly mar-

gin.

The effectiveness of PEDAL. We train the PatchNet only

with the Lc to validate its effectiveness. From Table 3, we

can see that the “PatchNet+Lc” outperforms the “PatchNet”

significantly on both dataset. The main reason is that the

PEDAL can provide effective guidance for PatchNet to fur-

ther refine the feature of patches on unlabeled datasets. We

also can observe that if we pull the image features of sim-

ilar person image together (i.e. “ResNet-50+Lc”), the per-

formance is worse than the “ResNet-50”. This experiment

shows that pulling the image feature together would blur the

identity information, making it less discriminative to similar

person.

The effectiveness of IPFL. The result of “PatchNet+Lv”

is clearly better than the baseline on both datasets. This is

because the IPFL can provide effective learning guidance to

the PatchNet by generating surrogate positive samples and

mining hard negative samples in a mini-batch.

The effectiveness of the combination of PEDAL and

IPFL. As shown in Table 3, the combination of PEDAL and

IPFL achieves the best results compared to all other vari-

ants. This validates that the two losses are mutually com-

plementary, since they function in different level aspects,

i.e. the patch level and the image level. Specifically, the

PEDAL can lead the PatchNet to learn discriminative patch

feature on the unlabeled datasets, Therefore, concatenated

feature (i.e. the image feature) would be more discrimina-

tive, facilitating the hard negative mining process of IPFL.

Table 4. Analysis on the proposed method with different patch

generation schemes (%). For each patch generation schemes, we

train the PatchNet on the MSMT17 and then perform unsupervised

training with PEDAL and IPFL.

Generation schemes
Market-1501 DukeMTMC-reID

Rank-1 mAP Rank-1 mAP

Randomly 24.1 14.8 16.0 10.9

Equally 66.6 38.5 56.2 39.4

PGN 68.5 40.1 72.0 53.2

4 patches 67.3 39.5 70.4 50.6

6 patches 68.5 40.1 72.0 53.2

8 patches 66.7 37.2 70.6 51.8

4.5. Further Analysis

Visualization. To further understand the patch-based dis-

criminative learning, we show a typical case of the nearest

patches for different branches in Figure 6. In the upper row

in Figure 6, we observe that our model pulls closer the red

T-shirt patches which are very likely from the same identity.

Although we may also pull closer the red T-shirt patches

from other persons, they typically have other discriminative

patches, e.g. different pants. The other discriminative patch

features would be learned in other branches (see the lower

row in Figure 6 for the pants patches). Therefore, although

depending only on one patch is not identity-discriminative

enough, combining different patches could further boost the

discriminability by helping to distinguish these partly simi-

lar persons.

Analysis on the PGN. To validate the effectiveness of

the PGN, we compare the PGN with two patch genera-

tion schemes, i.e. randomly selecting M patches from the

feature map or dividing the feature map into M horizontal

stripes equally. We also analyze the patch number M . The

results are shown in Table 4. We can observe that the perfor-

mance of the PGN is better than the randomly selection and

the equal horizontal partition, because the PGN is learnable

and thus it can adaptively adjust the locations of the patches

to find more effective patches according to the dataset.

The effect of the parameter k of PEDAL. The parameter

k of PEDAL decides how many patches of other images

are regarded as the similar patches of the target patch, then

the model would pull these patches closer and push other

patches away. As shown in Figure 7 (a), if the k is too small,

the IPFL may miss some similar patches so the performance
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Figure 7. Experimental analysis on the parameter k of PEDAL (a)

and the parameter r of IPFL (b). These experiments were carried

out on Market-1501 and DukeMTMC-reID.
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Figure 8. Analysis on the weight of the PEDAL.

degrades. By contrast, if the k is too large, the PEDAL

maybe pull some significantly dissimilar patches of other

images closer, result in a worse performance. As shown

in Figure 7 (a), the proposed PEDAL consistently improves

the baseline on the two tested datasets when k ∈ [5, 100],
with optimal performances achieved consistently when k ∈
[10, 25].
The effect of the parameter r of IPFL. The smaller r
means the top-n nearest neighbor is easier to be regarded as

the hard negative sample of xi. Particularly, r = 0 means

the top-1 nearest of xi is directly regarded as the hard nega-

tive sample. In this case, it is easily to regard another image

of the same identity as the the hard negative sample. But if

the r is too large, the negative sample is easy to distinguish

so that the CNN can not benefit from it much. Specifically,

for the parameter r, the proposed IPFL consistently pro-

vides improvements when r ∈ [2, 8] on both datasets, as

shown in Figure 7 (b).

The weight of the PEDAL. The analysis on the weight of

the PEDAL is reported in Figure 8. Combined with Ta-

ble 3, we can observe that the combination of the two losses

can achieve a better result. The PEDAL provides the patch-

level guidance to learn a more discriminative feature and the

IPFL serves as the pairwise guidance for PatchNet. Addi-

tionally, we can observe that the PEDAL contributes more

effective guidance for the PatchNet.

The universality of the proposed method. To further val-

idate the universality of our proposed method, more exper-

imental results on other person Re-ID datasets (including

CUHK01 [17], CUHK03 [18], and VIPER [10]) are pre-

sented in Table 5. We can see that our method is universally

effective on other datasets with the same parameter values.

Analysis on the pre-trained dataset. In order to evalu-

Table 5. Performance (%) comparison with currunt state-of-the-

art method on CUHK01, CUHK03, and VIPER. We fixed the

same parameter values as the experiments on Market-1501 and

DukeMTMC-reID)

Methods CUHK03 [18] CUHK01 [17] VIPER [10]

CAMEL [46] 31.9 57.3 30.9

PatchNet (baseline) 45.4 69.9 40.8

PAUL (ours) 52.3 73.3 45.2

Table 6. The performance (%) of our proposed method when the

PatchNet was pre-trained on the Market-1501 or the DukeMTMC-

reID dataset.

Source DukeMTMC-reID Market-1501

Target Market-1501 DukeMTMC-reID

Methods Rank-1 mAP Rank-1 mAP

PUL [7] 45.5 20.5 30.0 16.4

PTGAN [40] 38.6 - 27.4 -

TJ-AIDL [37] 58.2 26.5 44.3 23.0

HHL [55] 62.2 31.4 46.9 27.2

PAUL (Ours) 66.7 36.8 56.1 35.7

ate the effect of the pre-trained dataset, we pre-train the

PatchNet on other datasets and compare with other meth-

ods that use the same labeled dataset. The result is reported

in Table 6, where we can observe that our method signifi-

cantly outperforms the compared methods. By comparing

Table 6 and Table 2, we can see that the MSMT17 sig-

nificantly improves the performance on DukeMTMC-reID

dataset. This may because the DukeMTMC-reID has more

common patches with MSMT17 compared to the Market-

1501.

5. Conclusion

In this paper, we demonstrate the effectiveness of the

local feature learning in unsupervised re-id by proposing

a novel unsupervised patch-based discriminative learning

which enables the local feature learning in an unlabeled re-

id dataset. Specifically, we propose a patch-based unsuper-

vised learning framework (PAUL), in which the PatchNet is

designed to sample patches from a feature map of the per-

son image and to learn discriminatively the patch feature

on an unlabeled re-id dataset. To this end, we develop a

patch discriminative feature learning loss to provide effec-

tive guidance to learn discriminative patch feature on the

unlabeled re-id dataset. Simultaneously, we further propose

a image-level patch feature learning loss to mine the latent

pairwise relationship of the whole unlabeled images with

the guidance of the patches. Extensive experiments validate

the effectiveness of our proposed method as well as each

learning component in our model.
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