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Abstract

Unsupervised learning of identity-discriminative visual

feature is appealing in real-world tasks where manual la-

belling is costly. However, the images of an identity can be

visually discrepant when images are taken under different

states, e.g. different camera views and poses. This visual

discrepancy leads to great difficulty in unsupervised discrim-

inative learning. Fortunately, in real-world tasks we could

often know the states without human annotation, e.g. we can

easily have the camera view labels in person re-identification

and facial pose labels in face recognition. In this work we

propose utilizing the state information as weak supervision

to address the visual discrepancy caused by different states.

We formulate a simple pseudo label model and utilize the

state information in an attempt to refine the assigned pseudo

labels by the weakly supervised decision boundary rectifica-

tion and weakly supervised feature drift regularization. We

evaluate our model on unsupervised person re-identification

and pose-invariant face recognition. Despite the simplicity

of our method, it could outperform the state-of-the-art results

on Duke-reID, MultiPIE and CFP datasets with a standard

ResNet-50 backbone. We also find our model could per-

form comparably with the standard supervised fine-tuning

results on the three datasets. Code is available at https:

//github.com/KovenYu/state-information.

1. Introduction

While deep discriminative feature learning has shown

great success in many vision tasks, it depends highly on

the manually labelled large-scale visual data. This limits its

scalability to real-world tasks where the labelling is costly

and tedious, e.g. person re-identification [76, 53] and uncon-

strained pose-invariant face recognition [73]. Thus, learning

identity-discriminative features without manual labels has

drawn increasing attention due to its promise to address the

scalability problem [65, 18, 67, 66, 61].

*Corresponding author

Camera

view 1

Camera

view 2

Frontal

Profile

Extrinsic information in

Person re identification:

which camera view?

Extrinsic information in

Pose invariant face recognition:

which pose?

Figure 1. Examples of the state information. A pair of images in

each column are of the same individual (We do not assume to know

any pairing; this figure is only for demonstrating that different

states induce visual discrepancy. We only assume to know the

camera/pose label of each image but not the pairing).

However, the images of an identity can be drastically

different when they are taken under different states such as

different poses and camera views. For example, we observe

great visual discrepancy in the images of the same pedestrian

under different camera views in a surveillance scenario (See

Figure 1). Such visual discrepancy caused by the different

states induces great difficulty in unsupervised discriminative

learning. Fortunately, in real-world discriminative tasks, we

can often have some state information without human anno-

tation effort. For instance, in person re-identification, it is

straightforward to know from which camera view an unla-

beled image is taken [65, 67, 66, 12], and in face recognition

the pose and facial expression can be estimated by off-the-

shelf estimators [68, 48] (See Figure 1). We aim to exploit

the state information as weak supervision to address the

visual discrepancy in unsupervised discriminative learning.

We refer to our task as the weakly supervised discriminative

feature learning.

In this work, we propose a novel pseudo label model

for weakly supervised discriminative feature learning. We

assign every unlabeled image example to a surrogate class

(i.e. artificially created pseudo class) which is expected to

represent an unknown identity in the unlabelled training set,
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and we construct the surrogate classification as a simple ba-

sic model. However the unsupervised assignment is often

incorrect, because the image features of the same identity

are distorted due to the aforementioned visual discrepancy.

When the visual discrepancy is moderate, in the feature

space, an unlabeled example “slips away” from the correct

decision region and crosses the decision boundary to the

decision region of a nearby surrogate class (See the middle

part in Figure 2). We refer to this effect as the feature distor-

tion. We develop the weakly supervised decision boundary

rectification to address this problem. The idea is to rectify

the decision boundary to encourage the unlabeled example

back to the correct decision region.

When the feature distortion is significant, however, the

unlabeled example can be pushed far away from the correct

decision region. Fortunately, the feature distortion caused

by a state often follows a specific distortion pattern (e.g.,

extremely dark illumination in Figure 1 may suppress most

visual features). Collectively, this causes a specific global

feature drift (See the right part in Figure 2). Therefore,

we alleviate the significant feature distortion to a moderate

level (so that it can be addressed by the decision boundary

rectification) by countering the global-scale feature drift-

ing. Specifically, we achieve this by introducing the weakly

supervised feature drift regularization.

We evaluate our model on two tasks, i.e. unsupervised per-

son re-identification and pose-invariant face recognition. We

find that our model could perform comparably with the stan-

dard supervised learning on DukeMTMC-reID [77], Multi-

PIE [24] and CFP [47] datasets. We also find our model

could outperform the state-of-the-art unsupervised models

on DukeMTMC-reID and supervised models on Multi-PIE

and CFP. To our best knowledge, this is the first work to

develop a weakly supervised discriminative learning model

that can successfully apply to different tasks, leveraging

different kinds of state information.

2. Related Work

Learning with state information. State information has

been explored separately in identification tasks. In per-

son re-identification (RE-ID), several works leveraged the

camera view label to help learn view-invariant features and

distance metrics [34, 12, 7, 32, 81]. In face recognition,

the pose label was also used to learn pose-invariant models

[74, 72, 29, 84, 62, 50, 63]. Specifically, [66] and [42] visual-

ized the feature embedding to illustrate the feature distortion

problem nicely for person re-identification and face recogni-

tion, respectively. However, most existing methods are based

on supervised learning, and thus the prohibitive labelling cost

could largely limit their scalability. Therefore, unsupervised

RE-ID [66, 65, 31, 19, 56, 61, 59] and cross-domain trans-

fer learning RE-ID [67, 13, 78, 79, 52, 80, 11, 71, 20] have

been attracting increasing attention. These methods typi-

cally incorporate the camera view labels to learn the camera

view-specific feature transforms [65, 66], to learn the soft

multilabels [67], to provide associations between the video

RE-ID tracklets [31], or to generate augmentation images

[78, 79, 80]. Our work is different from the cross-domain

transfer learning RE-ID methods in that we do not need any

labeled data in the training stage. As for the unsupervised

RE-ID methods, the most related works are [65, 66] where

Yu et.al. proposed the asymmetric clustering in which the

camera view labels were leveraged to learn a set of view-

specific projections. However, they need to learn as many

projections as the camera views via solving the costly eigen

problem, which limits their scalability. In contrast we learn

a generalizable feature for all kinds of states (camera views).

Weakly supervised learning. Our method is to iteratively

refine pseudo labels with the state information which is

regarded as weak supervision. The state information serves

to guide the pseudo label assignments as well as to improve

the feature invariance against distractive states.

In literatures, weak supervision is a broadly used term.

Typical weak supervision [82] includes image-level coarse

labels for finer tasks like detection [5, 6] and segmentation

[55, 40]. Another line of research that is more related to

our work is utilizing large-scale inaccurate labels (typically

collected online [1] or from a database like Instagram [36]

or Flickr [28]) to learn general features. Different from ex-

isting works, our objective is to learn identity-discriminative

features that are directly applicable to identification tasks

without supervised fine-tuning.

Unsupervised deep learning. Beyond certain vision ap-

plications, general unsupervised deep learning is a long-

standing problem in vision community. The typical lines

of research include clustering based methods [9, 60, 2, 17]

which discovered cluster structures in the unlabelled data and

utilized the cluster labels, and the generation based methods

which learned low-dimensional features that were effective

for generative discrimination [44, 16, 23] or reconstruction

[51, 30, 3].

Recently, self-supervised learning, a promising paradigm

of unsupervised learning, has been quite popular. Self-

supervised methods typically construct some pretext tasks

where the supervision comes from the data. Typical pretext

tasks include predicting relative patch positions [15], pre-

dicting future patches [39], solving jigsaw puzzles [37, 38],

image inpainting [41], image colorization [69, 70] and pre-

dicting image rotation [22]. By solving the pretext tasks,

they aimed to learn features that were useful for downstream

real-world tasks.

Our goal is different from these works. Since they aim

to learn useful features for various downstream tasks, they

were designed to be downstream task-agnostic, and required

supervised fine-tuning for them. In contrast, we actually

focus on the “fine-tuning” step, with a goal to reduce the

need of manual labeling.
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3. Weakly supervised Discriminative Learning

with State Information

Let U = {ui}
N
i=1

denote the unlabelled training set,
where ui is an unlabelled image example. We also know the
state si ∈ {1, · · · , J}, e.g., the illumination of ui is dark,
normal or bright. Our goal is to learn a deep network f to
extract identity-discriminative feature which is denoted by
x = f(u; θ). A straightforward idea is to assume that in
the feature space every x belongs to a surrogate class which
is modelled by a surrogate classifier μ. A surrogate class
is expected to model a potential unknown identity in the
unlabeled training set. The discriminative learning can be
done by a surrogate classification:

min
θ,{μk}

Lsurr = −Σx log
exp(xTμŷ)

ΣK
k=1 exp(x

Tμk)
, (1)

where ŷ denotes the surrogate class label of x, and K denotes
the number of surrogate classes. An intuitive method for
surrogate class assignment is:

ŷ = argmax
k

exp(xT
μk). (2)

However, the visual discrepancy caused by the state leads to

incorrect assignments. When the feature distortion is mod-

erate, wrong assignments happen locally, i.e., x wrongly

crosses the decision boundary into a nearby surrogate class’

decision region. We develop the Weakly supervised Decision

Boundary Rectification (WDBR) to address it. As for the

significant feature distortion, however, it is extremely chal-

lenging as x is pushed far away from the correct decision

region. To deal with it, we introduce the Weakly supervised

Feature Drift Regularization to alleviate the significant fea-

ture distortion down to a moderate level that WDBR can

address. We show an overview illustration in Figure 2.

3.1. Weakly supervised decision boundary rectifi-
cation (WDBR)

We first consider the moderate visual feature distortion.

It “nudges” an image feature x to wrongly cross the decision

boundary into a nearby surrogate class. For example, two

persons wearing dark clothes are even harder to distinguish

when they both appear in a dark camera view. Thus, these

person images are assigned to the same surrogate class (see

Figure 2 for illustration). In this case, a direct observation is

that most members of the surrogate class is taken from the

same dark camera view (i.e. the same state). Therefore, we

quantify the extent to which a surrogate class is dominated

by a state. We push the decision boundary toward a highly

dominated surrogate class or even nullify it, in an attempt

to correct these local boundary-crossing wrong assignments.
We quantify the extent by the Maximum Predominance

Index (MPI). The MPI is defined as the proportion of the
most common state in a surrogate class. Formally, the MPI
of the k-th surrogate class Rk is defined by:

Rk =
maxj |Mk ∩Qj |

|Mk|
∈ [0, 1], (3)

where the denominator is the number of members in a surro-
gate class, formulated by the cardinality of the member set
of the k-th surrogate class Mk:

Mk = {xi|ŷi = k}, (4)

and the numerator is the number of presences of the most
common state in Mk. We formulate it by the intersection of
Mk and the state subset corresponding to the j-th state Qj :

Qj = {xi|si = j}. (5)

Note that the member set Mk is dynamically updated, as the

surrogate class assignment (Eq. (2)) is on-the-fly along with

the learning, and is improved upon better learned features.
As analyzed above, a higher Rk indicates that it is more

likely that some examples have wrongly crossed the deci-
sion boundary into the surrogate class μk due to the feature
distortion. Hence, we shrink that surrogate class’ decision
boundary to purge the potential boundary-crossing examples
from its decision region. Specifically, we develop the weakly
supervised rectified assignment:

ŷ = argmax
k

p(k) exp(xT
μk), (6)

where p(k) is the rectifier function that is monotonically
decreasing with Rk:

p(k) =
1

1 + exp(a · (Rk − b))
∈ [0, 1], (7)

where a ≥ 0 is the rectification strength and b ∈ [0, 1] is
the rectification threshold. We typically set b = 0.95. In
particular, we consider a = ∞, and thus we have:

p(k) =

{

1, if Rk ≤ b

0, otherwise
(8)

This means that when the MPI exceeds the threshold b we

nullify it by shrinking its decision boundary to a single point.

We show a plot of p(k) in Figure 3(a).
For any two neighboring surrogate classes μ1 and μ2, the

decision boundary is (where we leave the derivation to the
supplementary material):

(μ1 − μ2)
T
x+ log

p(1)

p(2)
= 0. (9)

Discussion. To have a better understanding of the WDBR,

let us first consider the hard rectifier function. When a sur-

rogate class’ MPI exceeds the threshold b (typically we set

b = 0.95), the decision region vanishes, and no example

would be assigned to the surrogate class (i.e., it is completely

nullified). Therefore, WDBR prevents the unsupervised

learning from being misled by those severely affected sur-

rogate classes. For example, if over 95% person images

assigned to a surrogate class are from the same dark camera

view, it is highly likely this is simply because it is too dark

to distinguish them, rather than because they are the same
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Figure 2. An illustration in which the weak supervision is the camera view in person re-identification. In the decision boundary rectification,

each colored bounding box denotes an identity (the identity labels are unknown; we use them here only for illustrative purpose). Each
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person. Thus, WDBR nullifies this poorly formed surrogate

class.

When we use the soft rectifier function, the WDBR does

not directly nullify the surrogate class that exceeds the thresh-

old, but favors the surrogate class which has lower MPI

(because they are less likely to have the boundary-cross prob-

lem) by moving the decision boundary. This can be seen

from Figure 3(b) where we plot a set of decision boundaries

in the two-class case. In some sense, the soft WDBR fa-

vors the state-balanced surrogate classes. This property may

further improve the unsupervised learning, especially if the

unlabelled training set is indeed state-balanced for most iden-

tities. However, if we do not have such a prior knowledge

of state balance, using hard rectifier can be more desirable,

because hard rectifier does not favor state-balanced surrogate

classes. We will discuss more about this property upon real

cases in Sec. 4.2.

In the supplementary material, we theoretically justify

our model by showing that the rectified assignment is the

maximum a posteriori optimal estimation of ŷ. However,

the WDBR is a local mechanism, i.e. WDBR deals with the

moderate feature distortion that nudges examples to slip in

nearby surrogate classes. Its effectiveness might be limited

when the feature distortion is significant.

3.2. Weakly supervised feature drift regularization

A visually dominant state may cause a significant fea-

ture distortion that pushes an example far away from the

correct surrogate class. This problem is extremely difficult

to address by only considering a few surrogate classes in a

local neighborhood. Nevertheless, such a significant feature

distortion is likely to follow a specific pattern. For example,

the extremely low illumination may suppress all kinds of

visual features: dim colors, indistinguishable textures, etc.

Collectively, we can capture the significant feature distortion

pattern in a global scale. In other words, such a state-specific

feature distortion would cause many exmaples x in the state

subset to drift toward a specific direction (see Figure 2 for

illustration). We capture this by the state sub-distribution

and introduce the Weakly supervised Feature Drift Regular-

ization (WFDR) to address it and complement the WDBR.
In particular, we define the state sub-distribution as

P(Qj), which is the distribution over the state subset Qj

defined in Eq. (5). For example, all the unlabeled person
images captured from a dark camera view. We further de-
note the distribution over the whole unlabelled training set
as P(X ), where X = f(U). Apparently, the state-specific
feature distortion would lead to a specific sub-distributional
drift, i.e., P(Qj) drifts away from P(X ). For example, all
person images from a dark camera view may be extremely
low-valued in many feature dimensions, and this forms a
specific distributional characteristic. Our idea is straightfor-
ward: we counter this “collective drifting force” by aligning
the state sub-distribution P(Qj) with the overall total dis-
tribution P(X ) to suppress the significant feature distortion.
We formulate this idea as the Weakly supervised Feature
Drift Regularization (WFDR):

min
θ

Ldrift = Σjd(P(Qj),P(X )), (10)

where d(·, ·) is a distributional distance. In our implementa-
tion we adopt the simplified 2-Wasserstein distance [4, 26]
as d(·, ·) due to its simplicity and computational ease. In
particular, it is given by:

d(P(Qj),P(X )) = ||mj −m||22 + ||σj − σ||22, (11)

where mj /σj is the mean/standard deviation feature vector

over Qj . Similarly, m/σ is the mean/standard deviation

feature vector over the whole unlabelled training set X .

Ideally, WFDR alleviates the significant feature distortion

down to a mild level (i.e., x is regularized into the correct
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decision region) or a moderate level (i.e., x is regularized

into the neighborhood of the correct surrogate class) that the

WDBR can address. Thus, it is mutually complementary to

the WDBR. We note that the WFDR is mathematically akin

to the soft multilabel learning loss in [67], but they serve for

different purposes. The soft multilabel learning loss is to

align the cross-view associations between unlabeled target

images and labeled source images, while we aim to align the

feature distributions of unlabeled images and we do not need

a source dataset.
Finally, the loss function of our model is:

min
θ,{μk}

L = Lsurr + λLdrift, (12)

where λ > 0 is a hyperparameter to balance the two terms.

In our implementation we used the standard ResNet-50

[25] as our backbone network. We trained our model for

approximately 1,600 iterations with batchsize 384, momen-

tum 0.9 and weight decay 0.005. We followed [25] to use

SGD, set the learning rate to 0.001, and divided the learning

rate by 10 after 1,000/1,400 iterations. We used a single

SGD optimizer for both θ and {μk}
K
k=1

. Training costed

less than two hours by using 4 Titan X GPUs. We initialized

the surrogate classifiers {μk}
K
k=1

by performing standard

K-means clustering on the initial feature space and using the

cluster centroids. For further details please refer to the sup-

plementary. We also summarize our method in an algorithm

in the supplementary material1.

4. Experiments

4.1. Datasets

We evaluated our model on two real-world discriminative

tasks with state information, i.e. person re-identification

(RE-ID) [76] and pose-invariant face recognition (PIFR) [27,

14]. In RE-ID which aims to match person images across

non-overlapping camera views, the state information is the

camera view label, as illustrated in Figure 4(a) and 4(b). Note

that each camera view has its specific conditions including

illumination, viewpoint and occlusion (e.g. Figure 4(a) and

4(b)). In PIFR, which aims to identify faces across different

poses, the state information is the pose, as illustrated in

Figure 4(c). We note that on both tasks the training identities

are completely different from the testing identities. Hence,

these tasks are suitable to evaluate the discriminability and

generalisability of learned feature.

Person re-identification (RE-ID). We evaluated on Market-

1501 [75] and DukeMTMC-reID [77, 45]. Market-1501

contains 32,668 person images of 1,501 identities. Each

person is taken images from at least 2 out of 6 disjoint camera

views. We followed the standard evaluation protocol where

the training set had 750 identities and testing set had the other

1Code can be found at https://github.com/KovenYu/

state-information

751 identities [75]. The performance was measured by the

cumulative accuracy and the mean average precision (MAP)

[75]. DukeMTMC-reID contains 36,411 person images of

1,404 identities. Images of each person were taken from

at least 2 out of 8 disjoint camera views. We followed the

standard protocol which was similar to the Market-1501

[45]. We followed [67] to pretrain the network with standard

softmax loss on the MSMT17 dataset [54] in which the

scenario and identity pool were completely different from

Market-1501 and DukeMTMC-reID. It should be pointed

out that in fine-grained discriminative tasks like RE-ID and

PIFR, the pretraining is important for unsupervised models

because the class-discriminative visual clues are not general

but highly task-dependent [21, 18, 52, 66], and therefore

some extent of field-specific knowledge is necessary for

successful unsupervised learning. We resized the images to

384× 128. In the unsupervised setting, the precise number

of training classes (persons) P (i.e. 750/700 for Market-

1501/DukeMTMC-reID) should be unknown. Since our

method was able to automatically discard excessive surrogate

classes, an “upper bound” estimation could be reasonable.

We set K = 2000 for both datasets.

Pose-invariant face recognition (PIFR). We mainly evalu-

ated on the large dataset Multi-PIE [24]. Multi-PIE contains

754,200 images of 337 subjects taken with up to 20 illumina-

tions, 6 expressions and 15 poses [24]. For Multi-PIE, most

experiments followed the widely-used setting [84] which

used all 337 subjects with neutral expression and 9 poses

interpolated between −60° and 60°. The training set con-

tained the first 200 persons, and the testing set contained the

remaining 137 persons. When testing, one image per identity

with the frontal view was put into the gallery set and all the

other images into the query set. The performance was mea-

sured by the top-1 recognition rate. We detected and cropped

the face images by MTCNN [68], resized the cropped im-

ages to 224 × 224, and we adopted the pretrained model

weights provided by [8]. Similarly to the unsupervised RE-

ID setting, we simply set K = 500. We also evaluated on

an unconstrained dataset CFP [47]. The in-the-wild CFP

dataset contains 500 subjects with 10 frontal and 4 profile

images for each subject. We adopted the more challenging

frontal-profile verification setting [47]. We followed the offi-

cial protocol [47]. to report the mean accuracy, equal error

rate (EER) and area under curve (AUC).

In the unsupervised RE-ID task, the camera view la-

bels were naturally available [67, 66]. In PIFR we used

groundtruth pose labels for better analysis. In the supple-

mentary material we showed the simulation results when

we used the estimated pose labels. The performance did

not drop until the correctly estimated pose labels were less

than 60%. In practice the facial pose is continuous and we

need to discretize it to produce the pose labels. In our pre-

liminary experiments on Multi-PIE we found that merging

the pose labels into coarse-grained groups did not affect the
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Figure 4. Dataset examples. The state information for RE-ID and

PIFR is camera view labels and pose labels, respectively.

Table 1. Model evaluation on the person re-identification (%).

Please refer to Sec. 4.2 for description of the compared methods.

Methods
DukeMTMC-reID Market-1501

rank-1 rank-5 mAP rank-1 rank-5 mAP

Supervised fine-tune 75.0 85.0 57.2 85.9 95.2 66.8

Pretrained 43.1 59.2 28.8 46.2 64.4 24.6
K-means as labels 37.3 52.1 25.2 47.3 63.1 25.6

Basic model 56.8 71.1 39.6 55.8 72.2 31.5
Basic + WDBR (hard) 69.4 80.5 50.2 60.3 73.4 34.5
Basic + WDBR (soft) 63.6 77.2 45.4 60.0 75.6 34.3

Basic + WFDR 67.7 79.4 47.5 67.4 82.3 39.4

Full model (hard) 72.1 83.5 53.8 74.0 87.4 47.9

Full model (soft) 70.3 81.7 50.0 70.7 85.2 43.4

Table 2. Model evaluation on the Multi-PIE (%). We report the

mean results averaged over 5 runs. Please refer to Sec. 4.2 for

description of the compared methods.
Methods avg 0° ±15° ±30° ±45° ±60°

Supervise fine-tune 98.2 99.7 99.4 98.8 98.1 95.7

Pretrained 88.7 98.5 97.5 93.7 89.7 71.2
K-means as labels 81.0 95.7 94.6 89.1 76.7 56.0

Basic model 54.5 91.2 86.5 60.0 34.5 18.8
Basic + WDBR (hard) 91.7 98.9 98.7 97.5 91.2 75.9
Basic + WDBR (soft) 97.0 99.1 98.9 98.3 96.8 93.0

Basic + WFDR 95.7 98.4 98.1 97.0 95.5 91.0

Full model (hard) 95.7 98.3 98.1 97.0 95.3 91.1
Full model (soft) 97.1 99.1 98.9 98.3 96.8 93.1

Table 3. Model evaluation on CFP (%). Please refer to Sec. 4.2 for

description of the compared methods.
Methods Accuracy EER AUC

Supervised fine-tune 95.50(0.98) 4.74(1.05) 98.82(0.50)

Pretrained 92.90(1.37) 7.40(1.37) 97.75(0.73)
Basic model 93.57(1.32) 6.89(1.51) 97.55(0.93)

Full model (soft) 95.49(0.70) 4.74(0.72) 98.83(0.29)

performance significantly. Therefore, for fair comparison

to other methods, we followed the conventional setting to

use the default pose labels. We set λ = 10 and b = 0.95
for all datasets except Multi-PIE which has more continual

poses and thus we decreased to λ = 1, b = 0.5. We eval-

uated both soft version a = 5 and hard version a = ∞.

We provide evaluations and analysis for K,λ,a and b in the

supplementary material.

4.2. Model evaluation and analysis

We decomposed our model for analysis. To ground

the performance, we provided the standard supervised fine-

tuning results (i.e. replacing our proposed loss with softmax

loss with groundtruth class labels, and keeping other set-

tings the same) which could be seen as an upper bound. As

an unsupervised baseline, we used K-means cluster labels

(i.e. we performed K-means once on the pretrained feature

space to obtain the cluster labels, and used the cluster labels

instead of the groundtruth labels for fine-tuning) and we

denote this as “K-means as labels”. We also ablated both

WDBR and WFDR from our full model to obtain a “Basic

model”. The key difference between “K-means as labels”

and “Basic model” is that the former uses fixed cluster labels

while the latter dynamically infers pseudo labels every batch

along with model training. We show the results in Table 1, 2

and 3. On CFP the observation was similar to Multi-PIE and

we show the most significant results only.

Comparable performance to standard supervised fine-

tuning. Compared to the standard supervised fine-tuning,

we found that our model could perform comparably with

the supervised results in both the person re-identification

task on DukeMTMC-reID and the face recognition task

on Multi-PIE and CFP. The overall effectiveness was clear

when we ground the performance by both the supervised

results and the pretrained baseline results. For example, on

DukeMTMC-reID, the supervised learning improved the

pretrained network by 31.9% in rank-1 accuracy, while our

model improved it by 29.0%, leaving only a gap of 2.9%. On

Multi-PIE our model achieved 97.1% average recognition

rate which was very closed to the supervised result 98.2%.

On CFP our model even achieved approximately the same

performance as supervised fine-tuning, probably because the

small training set (6300 images) favored a regularization.

We also notice that significant performances held both when

the initial pretrained backbone network was weak (e.g. in

RE-ID the initial rank-1 accuracy performance was below

50%) and when the initial backbone network was strong (i.e.

in PIFR the initial recognition accuracy performance was

over 80%). These comparisons verified the effectiveness of

our model.

Soft vs. hard decision boundary rectification. We found

that the soft rectification performed better on PIFR bench-

marks while hard rectification excelled at RE-ID. We as-

sumed that a key reason was that on the RE-ID datasets,

different persons’ images were unbalanced, i.e., some IDs

appeared only in two camera views while some may appear

in up to six camera views. For example, for a person A

who appeared in 2 camera views, the MPI RA was at least

1/2, while this lower bound was 1/6 for another person who

appeared in 6 camera views. Thus the soft rectifier may un-

fairly favor the surrogate class corresponding to the person

appearing in more camera views. While the hard rectifier

does not favor state-balance: it only nullified highly likely

incorrect surrogate classes with very high MPI. Therefore,

the hard rectification could be more robust to the state im-

balance. On the other hand, for Multi-PIE and CFP where

the classes were balanced, soft rectification would fine-tune

the decision boundary to a better position, and thus achieved

better results. Hence, in this paper we used the hard WDBR
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Table 4. Comparison to the state-of-the-art unsupervised RE-ID

(upper) and domain adaptation RE-ID (middle) models.

Methods Reference
DukeMTMC-reID Market-1501
rank-1 mAP rank-1 mAP

CAMEL [65] ICCV’17 40.3 19.8 54.5 26.3
PUL [18] ToMM’18 30.0 16.4 45.5 20.5

DECAMEL [66] TPAMI’18 - - 60.2 32.4
Distill [57] CVPR’19 48.4 29.4 61.5 33.5

Wu et.al. [58] ICCV’19 59.3 37.8 65.4 35.5

HHL [78] ECCV’18 46.9 27.2 62.2 31.4
ECN [79] CVPR’19 63.3 40.4 75.1 43.0
MAR [67] CVPR’19 67.1 48.0 67.7 40.0

UCDA-CCE [43] ICCV’19 55.4 36.7 64.3 34.5
PDA-Net [33] ICCV’19 63.2 45.1 75.2 47.6

DeepCluster [9] ECCV’18 40.2 26.7 48.0 26.1
ours This work 72.1 53.8 74.0 47.9

Table 5. Comparison to the state-of-the-art supervised PIFR mod-

els on the Multi-PIE dataset.
Methods avg 0° ±15° ±30° ±45° ±60°

FIP [83] 72.9 94.3 90.7 80.7 64.1 45.9
MVP [84] 79.3 95.7 92.8 83.7 72.9 60.1
CPI [62] 83.3 99.5 95.0 88.5 79.9 61.9

DRGAN [50] 90.2 97.0 94.0 90.1 86.2 83.2
FFGAN [64] 91.6 95.7 94.6 92.5 89.7 85.2
p-CNN [63] 93.5 95.4 95.2 94.3 93.0 90.3

DeepCluster [9] 86.4 96.7 96.6 93.3 84.8 65.6
ours 97.1 99.1 98.9 98.3 96.8 93.1

Table 6. Comparison to the state-of-the-art supervised PIFR mod-

els on the CFP dataset. Format: mean(standard deviation).
Methods Accuracy EER AUC

Deep Features [47] 84.91(1.82) 14.97(1.98) 93.00(1.55)
Triplet Embedding [46] 89.17(2.35) 8.85(0.99) 97.00(0.53)

Chen et.al. [10] 91.97(1.70) 8.00(1.68) 97.70(0.82)
PIM [73] 93.10(1.01) 7.69(1.29) 97.65(0.62)

DRGAN [50] 93.41(1.17) 6.45(0.16) 97.96(0.06)
p-CNN [63] 94.39(1.17) 5.94(0.11) 98.36(0.05)

Human 94.57(1.10) 5.02(1.07) 98.92(0.46)

DeepCluster [9] 91.30(1.58) 8.86(1.70) 96.77(0.96)
ours 95.49(0.70) 4.74(0.72) 98.83(0.29)

for RE-ID and the soft WDBR for PIFR.

Complementary nature of WDBR and WFDR. Compar-

ing the basic model (our model without WDBR or WFDR) to

basic model with either WDBR or WFDR, the performance

was consistently improved. With both WDBR and WFDR,

the performance was further improved. This showed that the

fine local-scale WDBR and the global-scale WFDR were

complementarily effective.

We noticed that on Multi-PIE this complementary nature

was less significant, as using WDBR alone could achieve

similar results to the full model. This may be due to the con-

tinual nature of the pose variation on Multi-PIE: the variation

from 0°to 60°is in a locally connected manifold [49], with

15°/30°/45°in between. Therefore, it was easier for our local

mechanism to gradually “connect” some 0°/15°surrogate

classes with some 15°/30°surrogate classes to finally have a

global aligning effect. In contrast, in RE-ID this manifold

nature is less apparent since it lacks evidence of inherent

relations between each pair of camera views.

4.3. Comparison to the state-of-the-art methods

We further demonstrated the effectiveness of our model

by comparing to the state-of-the-art methods on both tasks.

It should be pointed out that for RE-ID and PIFR where

the goal was to solve the real-world problem, there were no

standards on architecture: different works used different net-

works and different pretraining data. Thus we simply kept

using the standard ResNet-50 without task-specific improve-

ments and using the public pretraining data. For a fairer

comparison, we also compared our method with a recent

unsupervised deep learning method DeepCluster [9], which

also uses a discriminative classification loss. We used the

same architecture and pretraining as for our method. We

show the results in Table 4, 5 and 6.

Superior performance across tasks and benchmarks.

Compared to the reported results, our method could achieve

the state-of-the-art performances. On unsupervised RE-ID

task, our method achieved a 5.0%/5.8% absolute improve-

ment in rank-1 accuracy/MAP on DukeMTMC-reID, com-

pared to the recent state-of-the-art RE-ID model MAR [67],

which used exactly the same architecture and pretraining

data as ours. Although a few recent domain adaptation meth-

ods [33] achieve comparable performances to our method,

it is worth noting that they rely on labeled source data for

discriminative learning, while we do not use labeled data and

our method can generalize to different tasks instead of specif-

ically modeling a single RE-ID task. We note that many of

the compared recent state-of-the-art RE-ID methods also

exploited the camera view labels [78, 79, 67, 65, 66, 58, 43].

For instance, the domain adaptation RE-ID models HHL

[78]/ECN [79] leveraged the camera view labels to synthe-

size cross-view person images for training data augmen-

tation [78, 79], and MAR [67] used view labels to learn

the view-invariant soft multilabels. On the pose-invariant

face recognition task, our model outperformed the state-of-

the-art supervised results on both Multi-PIE and the CFP

benchmarks. We also note that most compared PIFR models

exploited both the identity labels and the pose labels.

Our model also outperformed the DeepCluster [9] signifi-

cantly on all the four benchmarks. A major reason should

be that some discriminative visual clues (e.g. fine-grained

clothes pattern) of persons (/faces) were “overpowered” by

the camera view (/pose) induced feature distortion. Without

appropriate mechanisms to address this problem, the clus-

tering might be misled by the feature distortion to produce

inferior cluster separations. In contrast, our model addressed

this problem via the weakly supervised decision boundary

rectification and the feature drift regularization.

4.4. Visualization

To provide visual insights of the problems our model tried

to address, we show the t-SNE embedding [35] of the learned

features in Figure 5. Note that the shown identities were

unseen during training, and thus the characteristic reflected

in the qualitative results were generalisable.

Addressing intra-identity visual feature discrepancy.

Let us compare Figure 5(a) and Figure 5(b) for an illus-

tration. Figure 5(a) illustrated that the same person (see the
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Cam view 1

Cam view 4

(a) RE-ID, basic model (b) RE-ID, full model

Frontal

(c) PIFR, basic model (d) PIFR, full model

Figure 5. The t-SNE embedding of 10 identities on the

DukeMTMC-reID and Multi-PIE datasets. Each color represents

an identity randomly chosen from the unseen testing set. Best

viewed in screen and zoom in.

highlighted brown points) appeared differently in two cam-

era views, which had different viewpoints and backgrounds.

This visual discrepancy caused significant feature distortion

of the identity. Apparently, it was extremely difficult to ad-

dress this problem if other effective mechanisms were not

provided besides feature similarity. From Figure 5(b) we

observed that when equiped with the WDBR and WFDR,

the feature distortion was significantly alleviated. This ob-

servation indicated that the our model leveraged the state

information to effectively alleviate the intra-identity visual

discrepancy for better discriminative feature learning.

Addressing inter-identity visual feature entanglement.

In a more complex case shown in Figure 5(c), we observed

that some visually similar frontal face images (males with

eye glasses) were entangled with each other in the feature

space learned by the basic model. In particular, some ma-

genta, red and dark green points highly overlapped with

each other. This demonstrated that if we simply used fea-

ture similarity, it was also extremely difficult to address

the inter-identity visual feature entanglement. Nevertheless,

as shown in Figure 5(d) our full model could address this

problem with the WDBR and WFDR. The learned feature

space was much desirable, and the inter-identity overlapping

points were now distant from each other. In other words,

our model could leverage the state information to help the

unsupervised learning via alleviating the inter-identity visual

feature entanglement.

Table 7. Multiple kinds of state information on Multi-PIE. We

report mean results with 5 runs (%).
Methods avg 0° ±15° ±30° ±45° ±60°

Supervised fine-tune 96.6 98.9 98.6 97.6 96.0 93.1

Pretrained 83.8 95.6 94.2 89.3 81.5 64.6
w/ only pose labels 94.6 96.5 96.2 95.9 94.9 90.6

w/ only illumination labels 30.3 73.3 65.8 24.9 7.0 2.2
w/ only expression labels 43.5 80.6 75.2 51.5 26.2 2.6

w/ all three kinds of labels 95.9 98.3 98.2 97.2 95.7 91.1

4.5. Multiple kinds of state information

Our method is easy to extend to incorporate multiple

kinds of state information. We experimented on Multi-

PIE with the state information being expression, illumi-

nation and pose. We used all 6 expressions, 20 illumi-

nations and 9 poses. We decomposed the rectifier by

p(k) = pp(k) · pi(k) · pe(k), where the subscripts p/i/e

stand for pose/illumination/expression, respectively. We also

accordingly use three equally-weighted feature drift regu-

larization terms in the loss function. We used hard WDBR

to have a regular shape of rectifier function. We show the

results in Table 7. Exploiting pose labels produced much

better results than illumination and expression, indicating

that pose was the most distractive on Multi-PIE. Exploit-

ing all three kinds of state information further improved the

performance to 95.9%, which was closed to the supervised

result 96.6%. This comparison showed that our model could

be further improved when more valuable state information

was available.

5. Conclusion and Discussion

In this work we proposed a novel psuedo label method

with state information. We found that some proper state in-

formation could help address the visual discrepancy caused

by those distractive states. Specifically, we investigate the

state information in person re-identification and face recog-

nition and found the camera view labels and pose labels

to be effective. Our results indicate that it is reasonable to

make use of the free state information in unsupervised per-

son re-identification and face recognition. Since the weakly

supervised feature drift regularization (WFDR) is a simple

loss term which is model-free, it can be plugged into other

different methods than our proposed pseudo label method.

However, we should point out that our method works

with the state information that corresponds to the visually

distractive states. As for more general state information, it

still remains an open problem to effectively utilize it.
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