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Abstract

Recovering lighting in a scene from a single image is
a fundamental problem in computer vision. While a mir-
ror ball light probe can capture omnidirectional lighting,
light probes are generally unavailable in everyday images.
In this work, we study recovering lighting from accidental
light probes (ALPs)—common, shiny objects like Coke cans,
which often accidentally appear in daily scenes. We propose
a physically-based approach to model ALPs and estimate
lighting from their appearances in single images. The main
idea is to model the appearance of ALPs by photogram-
metrically principled shading and to invert this process via
differentiable rendering to recover incidental illumination.
We demonstrate that we can put an ALP into a scene to allow
high-fidelity lighting estimation. Our model can also recover
lighting for existing images that happen to contain an ALP*.

I'd rather be Shiny. — Tamatoa from Moana, 2016

1. Introduction

Traditionally, scene lighting has been captured through
the use of light probes, typically a chromium mirror ball;
their shape (perfect sphere) and material (perfect mirror)
allow for a perfect measurement of all light that intersects
the probe. Unfortunately, perfect light probes rarely appear
in everyday photos, and it is unusual for people to carry
them around to place in scenes. Fortunately, many everyday
objects share the desired properties of light probes: Coke
cans, rings, and thermos bottles are shiny (high reflectance)
and curved (have a variety of surface normals). These ob-
jects can reveal a significant amount of information about
the scene lighting, and can be seen as imperfect “accidental”
light probes (e.g., the Diet Pepsi in Figure 1). Unlike perfect
light probes, they can easily be found in casual photos or
acquired and placed in a scene. In this paper, we explore us-
ing such everyday, shiny, curved objects as Accidental Light
Probes (ALPs) to estimate lighting from a single image.

“Project website: https://kovenyu.com/ALP
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Figure 1. (Left) From an image that has an accidental light probe
(a Diet Pepsi can), we insert a virtual object (a Diet Coke can)
with estimated lighting using the accidental light probe (Middle),
and using estimated lighting from a recent state-of-the-art lighting
estimation method [49] (Right). Note how our method better re-
lights the inserted can to produce an appearance consistent with the
environment (e.g., the highlight reflection and overall intensity).

In general, recovering scene illumination from a single
view is fundamental for many computer vision applications
such as virtual object insertion [9], relighting [46], and pho-
torealistic data augmentation [51]. Yet, it remains an open
problem primarily due to its highly ill-posed nature. Images
are formed through a complex interaction between geometry,
material, and lighting [2 1], and without precise prior knowl-
edge of a scene’s geometry or materials, lighting estimation
is extremely under-constrained. For example, scenes that
consist primarily of matte materials reveal little information
about lighting, since diffuse surfaces behave like low-pass
filters on lighting during the shading process [38], eliminat-
ing high-frequency lighting information. To compensate for
the missing information, the computer vision community has
explored using deep learning to extract data-driven priors for
lighting estimation [14,44]. However, these methods gener-
ally do not leverage physical measurements to address these
ambiguities, yet physical measurements can offer substantial
benefits in such an ill-posed setting.

For images with ALPs, we propose a physically-based
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modeling approach for lighting estimation. The main idea is
to model the ALP appearance using physically-based shad-
ing and to invert this process to estimate lighting. This
inversion process involves taking an input image, estimating
the ALP’s 6D pose and scale, and then using the object’s
surface geometry and material to infer lighting. Compared to
purely data-driven learning approaches that rely on diverse,
high-quality lighting datasets, which are hard to acquire, our
physically-based approach generalizes to different indoor
and outdoor scenes.

To evaluate this technique, we collect a test set of real
images, where we put ALPs in daily scenes and show that
our approach can estimate high-fidelity lighting. We also
demonstrate lighting estimation and object insertion based
on existing images (Figure 1).

In summary, we make the following three contributions:

* We propose the concept of accidental light probes
(ALPs), which can provide strong lighting cues in ev-
eryday scenes and casual photos.

* We develop a physically-based approach for lighting
estimation for images with an ALP and show improved
visual performance compared to existing light estima-
tion techniques.

* We collect a dataset of ALPs and a dataset of images
with ALPs and light probes in both indoor and out-
door scenes. We demonstrate that our physically-based
model outperforms existing methods on these datasets.

2. Related Work

Lighting estimation. Traditional light probes capture om-
nidirectional lighting [9] but are usually absent in existing
images. Researchers have used everyday objects like human
faces [0,23,27,46,56] and eyes [33] to estimate lighting
in portrait images. In contrast, we target images with high-
reflectance objects. Other research focuses on lighting esti-
mation from known, non-reflective objects. Weber et al. [53]
and Park et al. [34] learn to regress illumination directly
from homogeneous-material objects, while et al. [54] extend
this to spatially-varying materials. These methods require
large, diverse lighting data to generalize. Some approaches
use RGBD video [35,39] to estimate scene lighting, but we
focus on lighting estimation from a single RGB image.

In addition to object-based lighting estimation, another
popular line of work focuses on learning lighting estima-
tion directly from images of scenes [12—14,43,44,58,59].
Many of these methods rely heavily on supervised training
on synthetic data. As a result, they are sensitive to domain
shifts between training and test data and, in particular, suffer
from a synthetic-to-real domain gap. In contrast, our ap-
proach is based on physically principled modeling and is not
vulnerable to this issue.

Inverse rendering. Our approach is closely related to in-
verse rendering methods that aim to jointly recover geom-
etry, material, and lighting from images. Recent work in
this area uses multi-view observations of an object with
known camera poses to recover scene lighting and object
properties [18,32]. These methods jointly optimize geom-
etry, material, and lighting and generalize to diverse scene
settings. However, in single-view settings, the optimization
problem for inverse rendering is highly ill-posed, and these
methods often produce degenerate solutions.

Learning-based inverse rendering techniques have also
gained popularity in material and geometry estimation tasks
[30,42,52,57,61]. These methods include differential render-
ing as part of their training pipeline and can learn priors to
model geometry and materials of scenes and objects. How-
ever, they are limited in their ability to generalize to a diverse
set of scenes.

Material reconstruction. Material modeling and recon-
struction have a long history in computer vision and graphics.
Early papers [4, 15,47] developed early analytical models
of material reflection based on general experimental obser-
vations. More recent works [8, 20, 28] have attempted to
directly solve for a general bidirectional reflectance distribu-
tion function (BRDF), which analytically defines how light
is reflected at a given point on an object’s surface; however,
many of these techniques fail for highly specular or curved
objects. For example, traditional BRDF acquisition [10,31]
requires a gonioreflectometer, which tries to precisely mea-
sure reflectance at different angles. This machine typically
runs on flat objects and struggles on curved objects like Diet
Coke cans. Modern approaches [62] use RGBD sensors
and joint optimization on differentiably rendered objects and
multi-view images [18, 32, 60]; our approach builds upon
differentiable rendering to optimize material reconstruction
and adapts them for ALPs.

3. Approach

Accidental Light Probes (ALPs) are daily metallic shiny
objects, such as a soda can, a thermoflask, or a ring. Given a
single image containing an ALP, we aim to recover the inci-
dental illumination by inverting physically-based rendering,
as shown in Fig. 2. Our main idea is that we can first acquire
the shape and reconstruct the spatially-varying BRDF of
the ALP offline (Fig. 2 top), and then optimize incidental
lighting as well as the 6D pose of the ALP (Fig. 2 bottom).

3.1. Formulation

Our goal is to estimate high-fidelity lighting from the
appearance of an ALP in a single image. We approach this
goal through the perspective of inverse rendering, where the
forward process is described by the rendering equation [21]:
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Figure 2. Our physically-based approach to lighting estimation consists of (A) offline Accidental Light Probe (ALP) reconstruction and (B)
inference-time single-image lighting estimation. For (A), we use a capture-optimization hybrid method to reconstruct the ALP model with
high fidelity. For (B), we formulate lighting estimation as a joint optimization of scale, 6D pose and environment lighting.

Lwo) = [ Lilw)fwiw)n-wids, (1)
H

where L(w,) is the outgoing radiance to direction w, (cor-
responding to pixel intensity), L;(w;) is incidental radiance
from direction w; (lighting), f is the bidirectional reflectance
distribution function (BRDF) at the surface location (ma-
terial), n is the normal direction (geometry), and H is the
upper hemisphere along the normal. Recovering lighting by
inverting Eqn 1 is a highly ill-posed problem, as infinitely
many combinations of geometry, material, and lighting can
generate the same appearance in the image. Fortunately, for
ALPs, we can pre-acquire prior physical knowledge of their
shapes and materials as they are everyday objects. Thus,
we can reduce the full inverse rendering problem to a joint
estimation of 6D ALP pose and lighting, which is relatively
more constrained and tractable:

minﬁ (Irender(ﬂ'a Lz|f7 S)a Iref)a

Tri k2

@

where Ienger 1S generated by a differentiable renderer that
takes the shape S (represented by a mesh), the 6D pose of the
ALP T, the spatially-varying BRDF f, and the environment
lighting L; as inputs. I, denotes the observed single image.
L denotes an image-space loss that we define in Section 3.3.
Our physically-based formulation entails the high-fidelity
acquisition of shape and spatially-varying material of the
ALP, as well as a robust single-view joint optimization al-
gorithm. We show an overview in Fig. 2 and elaborate the
components in Section 3.2 and Section 3.3, respectively.

Shading model. We adopt physically-based rendering
(PBR) [36] due to its principled photogrammetry and ra-
diometry. Specifically, we consider metallic materials as

they have little diffuse reflection. Diffuse reflection is unde-
sirable as it behaves like a low-pass filter of lighting in the
shading process [38], eliminating the physically recoverable
lighting information. To model metallic material, we use a
microfacet model [47] with a GGX distribution [48]:

D-F-G
flwiywo) = g,

(n-w;)(n-wy)

3)

where D is the GGX normal distribution [48], F' is the
Fresnel reflection, and G is the geometric attenuation. We
adopt Disney’s parameterization [5], where the metallic
material is modeled by its specular albedo A and rough-
ness r. Specifically, the specular albedo A is used to
model Fresnel reflection by Schlick’s approximation [40]
F=A+(1-A) (1~ |h-w)P where h = 2ize; de-
notes the half vector. The roughness r controls the shape
of the specular reflection lobe via the micro-normal distri-

bution D =

4 . .
m and the geometric attenuation
_ 2|n-wi|

- |n<wi|+\/r4+(177‘4)|n-wi|2 '

2|n-w,|
|n-wo|+\/r4+(177‘4)|n-wo|2 ’

Lighting model. To recover lighting for arbitrary conditions,
we use an environment map to represent omnidirectional
lighting and adopt image-based lighting for shading each
pixel. For efficiency, we only consider direct lighting and
use a differentiable rasterizer with deferred shading [24] to
render [.nger- This is inaccurate for concave objects with
self-occlusion and self-reflections. To mitigate this without
expensive global illumination, we include a soft visibility
term to Eqn 1 to approximate it such that the shading output
is modulated as vL(w, ), where v denotes the soft visibility
that is optimized and treated as a surface texture.
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3.2. Reconstructing ALPs

Recovering high-fidelity lighting by physically-based in-
verse rendering requires high-quality geometry and mate-
rial reconstruction of the ALPs. While existing state-of-
the-art inverse rendering methods can jointly optimize for
geometry, material, and lighting from dense multi-view im-
ages [18, 32, 60], they still struggle for real metallic ob-
jects under arbitrary lighting due to high specularity (Fig. 4).
Moreover, several challenges exist when the goal is not view
synthesis but photogrammetrically correct reconstruction.
For highly specular objects such as metallic ones, the re-
flected lights from the near field can lead to environment
baking, as it breaks the distant light assumption (we show an
example of the environment-baked material reconstruction
in the supplementary material). The color ambiguity of mate-
rial albedo and lighting is also not resolved. In addition, the
geometry reconstruction quality heavily relies on the quality
of object silhouettes in multi-view images.

To overcome these challenges, we reconstruct ALPs by a
hybrid method. First, we use a light box with a turntable to
control environment lighting for multi-view capture, and us-
ing a thin supporting stand to alleviate near-field reflections
(setup shown in Fig. 3) and environment baking. Second, in-
stead of optimizing the incidental lighting to the ALP under
capture, we record it by a calibrated light probe to remove
the color ambiguity between material and lighting. And
third, we provide a high-quality shape using a range scan-
ner [ 1] to reduce the geometry reconstruction down to 6D
pose and size fitting. Thus, as demonstrated in the top row of
Figure 2, our ALP reconstruction is cast as an optimization
for its spatially-varying material and shape fitting:

m{ir} L (Irender(ﬂ'a a, f|Li7 5)7 Icapture)a 4)
’ {Icaplure}

where m and o are the 6D pose and size to fit the
shape S to multi-view camera coordinate frame solved by
COLMAP [41], and f is the material parameterized by
spatially-varying albedo A and roughness r. We show the
reconstruction of a Coke can in Fig. 4. We include the opti-
mization and loss details in the supplementary material.

3.3. Single-View Physically-Based Light Estimation

Given an image containing an ALP, we first extract an
object segmentation mask for the ALP by manually crop-
ping the image and then using an off-the-shelf foreground
segmentation tool [2]; however, this could alternately be
obtained by object detection [7] with salient object segmen-
tation [37] or semantic segmentation [45]. We then retrieve
the appropriate ALP model, containing its reflectance and
geometric information. Yet, even given the ALP’s 3D model
and 2D segmentation in the input image, accurately aligning
these two elements is still challenging. Traditional feature

Figure 3. (Left) We use a light box with controllable lighting for
our capture. To mitigate near-field reflections, we leverage a thin
stand to support the object. (Right) To minimize environmental
changes due to camera and photographer movement, we cover the
lightbox with a cloth and use a turntable for multi-view capture.

point detection and Perspective-n-Point methods do not work
on textureless objects such as rings and thermoflasks. Addi-
tionally, modern learning-based single-view pose estimation
methods [29, 50, 55] require diverse, realistic lighting to syn-
thesize training data and do not generalize well outside the
training distribution.

Therefore, we formulate the lighting estimation and pose
estimation as a joint estimation problem in Eqn 2, and we
solve it via a differentiable rendering-based optimization
which is generalizable to arbitrary scenes for both textured
and textureless objects (see the bottom of Figure 2). Here
we need a joint estimation as the appearance of a specular
object (and thus the differentiable rendering gradient sig-
nals) is highly dependent on both the object pose and the
environment lighting. We use Monte Carlo ray tracing with
Visible Normal Distribution Function (VNDF) importance
sampling [19] for unbiased shading.

Losses and regularizations. Our loss function used in

Eqn 2 is given by:
L= £RGB + Emask +>\1 Epose-reg +)\2 Llight-rega (5)

where Lrgp denotes a L loss on RGB images, L5k de-
notes a combination of a L loss and a Chamfer loss on
masks [3], where the mask is given by the differentiable
rasterizer [24]. Lyose-reg and Liight-reg denote a pose regular-
ization and a lighting regularization with their weights \;
and \g, respectively.

Without multi-view constraints, the joint optimization
problem has multiple local minima for the 6D pose; thus, we
introduce a pose regularization and a lighting regularization.
The pose regularization is given by:

£pose»reg = ||B(Mrender) - B(Mref)Hg + ||q - QrefH%, (6)

where Mienger is the rendered mask, B(M,enger) denotes the
pixel-space barycenter of the mask, ¢ denotes the quaternion
representation of the ALP orientation, and ¢ denotes a com-
mon orientation (we use a front-facing canonical orientation
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Figure 4. Visual comparison of ALP reconstruction from state-
of-the-art optimization-based inverse rendering methods [18,32]
versus our hybrid method. Recent inverse rendering methods strug-
gle on real textured metallic objects.
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Figure 5. Close up of our ALP dataset.

obtained by aligning principal axes). The barycenter term
prevents vanished gradient due to non-overlapping pose ini-
tialization, and the orientation term prevents hard-to-escape
local minima like upside-down cans. We decay the weight
of the pose regularization to zero through optimization. In
addition, to further address local minima in 6D poses, we
use multiple (4 in our experiments) orientation initialization
and we keep the one with the highest re-rendering PSNR.

To accurately estimate omnidirectional lighting by invert-
ing Eqn 1, we need to evaluate the Monte Carlo integral
interval densely over light rays coming from all directions.
However, from a single view, an ALP often only covers a
limited subset of normal directions compared to a perfect
sphere. Thus, light rays coming from a certain subset of
directions contribute little to the appearance of the ALP.
These directions are then under-sampled, and the lighting
estimation for them is less informed and unconfident.

To mitigate this, we introduce a lighting smoothness reg-
ularization which “fills in” the less confident regions in the
environment map by propagating the confident information
from nearby directions. The regularization is given by:

»Clight—reg = ||LZ(OJ) - Lz(w + ALU)Hl, )

where Aw denotes a small deviation of a solid angle sampled
from a normal distribution, and w is sampled uniformly in
all solid angles. Note that in addition to propagating confi-
dent lighting estimates, the lighting regularization also helps
improve pose estimation, since many pose estimation errors
come from trying to fix mistakes in high-frequency [17]
lighting changes, which light regularization alleviates.

4. Experiments
4.1. Setup

Accidental Light Probes Dataset. We acquire 5 common
accidental light probes that have different shapes or spatially-
varying BRDFs, including 3 soda cans (diet Coke, diet Pepsi,
and Sprite), a thermos cap, and a solder tip cleaner. We show
example images in Figure 5.

Evaluation Dataset. We collect a dataset of 10 indoor
scenes and 13 outdoor scenes. The indoor and outdoor
scenes are taken at different points of time, such as day
and night, at different locations. We show examples in Fig-
ure 6. We place each of our ALPs in the scenes and capture
HDR images of the ALPs. We also capture ground-truth
lighting by a chromium ball (a perfect light probe).

Baselines. We compare our method to several state-of-the-
art lighting estimation methods [12, 14, 49]. Unlike our
method, all of these techniques utilize deep learning. Since
[12, 14] do not have publicly available models, we asked
their authors to run inference on our dataset.

4.2. Comparison to Baseline Methods

Qualitative Results. For all object insertion comparisons,
we compute an environment map either through an ALP
with our proposed method or by running the other baselines
on a single image of the scene. Note that for the baselines,
we use the image with the perfect light probe as input; this
should provide a slight advantage to these techniques since
the image with the perfect light probe contains the most
information regarding scene lighting.

In Figure 7, we insert various objects into the scene and
relight them using the computed environment maps; we then
qualitatively compare the results. We demonstrate that our
computed environment map produces significantly more ac-
curate and compelling results than other single-image light-
ing estimation methods. In particular, note that our method
is the only approach that can recover the overall tone of the
lighting: other methods are either too yellow or gray.

In Figure 8, we show relighting results on perfect spheres
of various finishes from all methods and ALPs on both indoor
and outdoor scenes. Only our technique produces results
similar to the ground truth for mirror finishes. We note that
for all the three soda cans, the relighting on mirror spheres
are slightly blurry, since their materials are much rougher
than perfect mirror, which behaves as low-pass filters of
lighting in the shading process [38]. We also note that for
Sprite and diet Coke, there is some texture color baking in
the recovered lighting due to imperfectly aligned 6D poses,
which lead to high-frequency lighting artifacts to compensate
the pixel-space misalignment. Our lighting regularization
mitigates this type of artifacts, yet a highly robust algorithm
remains as future work.
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Figure 6. Examples of our collected dataset for evaluating lighting estimation under different illumination conditions, including indoor and

outdoor scenes at daytime and nighttime.

Input image Garon et.al. DeepParam

StyleLight Ours Groundtruth lighting

e ; 3 W\ F

Figure 7. Object insertion results on our test scenes for both indoor (first two rows) and outdoor (last two rows). We compare to Garon et
al. [14], Deep parametric lighting [12], and StyleLight [49]. We center-crop the result images for better visualization.

Quantitative Results. In Table 1, we report quantitative
results on relighting perfect spheres with various representa-
tive materials (mirror, shiny, diffuse). Similar to [26,49], we
compute angular error [ 1] and scale-invariant RMSE [16]
to compare the relighted spheres from each technique to the
ground truth relighting.

Quantitatively, for the relighting task, our method, applied
to any of the ALPs, significantly outperforms the baselines.
In particular, w.r.t. angular error, the Thermos cap provides
a 3 to 4 times improvement over the best baseline.

4.3. Analysis

Capture Setup. We also analyze the quality of our recon-
struction compared to two recent multi-view inverse render-
ing methods, Nvdiffrec [32] and Nvdiffrecmc [ 18] using our
lightbox capture setups. Table 2 shows the results of using
our lighting estimation pipeline with various reconstructions
of a Diet Coke can. Our reconstruction performs the best
and leads to a decrease of angular error by 20% or more.

Both Nvdiffrec and Nvdiffrecmc are normally applied to
multiview casual images, so for completeness, we also com-
pute reconstructions and quantitative results for this setting
(included in the supplementary materials). These reconstruc-
tions perform strictly worse than those computed from the
lightbox setup. We also show a qualitative comparison of the
geometry and materials in Figure 4, of each technique in its
default setting, where ours are clearly better than the alter-
native methods. Table 2 shows that our ALP reconstruction
pipelines give us better results than using current state-of-art
inverse rendering methods to get our ALP models.

Ablation for 6D Pose + Scale Estimation. As mentioned
in Sec. 3.3, the pose estimation problem for aligning a 3D
model of an ALP and its appearance in a real image is chal-
lenging. The appearance of the object in the real image
depends on both its pose and lighting; trying to jointly opti-
mize these can introduce potential failure cases. In Sec 3.3,
we describe several design choices w.r.t. the optimization and
loss which address some of these failures cases. In Table 3,
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Indoor Outdoor
Method Angular Error], Scale-invariant RMSE Angular Error], Scale-invariant RMSE,
Mirror  Shiny Diffuse Mirror Shiny Diffuse  Mirror  Shiny Diffuse Mirror Shiny  Diffuse
StyleLight [49] 12.572  7.700  5.949 3.087 0.837 0.264 15.088 9.830  8.539 1.867 0918  0.294
Deep Param. [12]  7.204 6.252  6.166 3.137 0958  0.287 8.803  7.228  6.525 1.963  1.056  0.305
Garon et al. [14] 9403 8215 6.626 3.030 0.754  0.207 8.062 6.873 6.118 1.706  0.766  0.237
Cleaner 5.682 4550  3.965 2204 0.252  0.073 6.395 4920  5.155 1.081 0245 0.101
Diet Coke 4733 3.405 3.067 2901 0.550 0.101 6.011 3.877 2587 1.460  0.501 0.136
Diet Pepsi 3972 2712 2.190 2.726 0408  0.064 4890 2.830 1472 1.352 0396  0.108
Sprite 5952  4.445 3.767 2913 0556  0.112 7.023 4923  3.892 1468 0513  0.154
Thermos cap 3.744 2.080 1.622 2.555 0.288  0.057 3965 2.159 1.516 1.092  0.217  0.053

Table 1. Comparison to state-of-the-art single image lighting estimation methods: StyleLight [49], Deep Parametric [12] and Garon et

al [14]. We evaluate them using relighting on different materials.

Input Mirror Shiny Diffuse Input

Deep
Parametricis

Garon
et al

Diet
Pepsi

Diet
Coke

Sprite

Cap

Cleaner

GT

Mirror Shiny Diffuse

Input Mirror Shiny Diffuse

Figure 8. Qualitative comparison of relighting results in outdoor (left and center) and indoor (right) scenes. We compare our approach to
StyleLight [49], Deep Parametric [12] and Garon et al [14] on relighting mirror, shiny and diffuse spheres.

we perform an ablation study on each of these decisions and
report quantitative results. We show that all design decisions
(Silhouette loss, Chamfer loss [3], joint optimization, pose,
and light regularization) contribute to the final overall perfor-
mance. We also show representative examples in Figure 9.
They demonstrate how each design choice helps the pose
estimation, which in return helps lighting estimation. In
our supplementary material, we further showcase accurate
estimations even under extreme object poses.

Visualizing confident regions for ALPs. As briefly dis-
cussed in Sec. 3.3, an ALP has a subset of surface normals
compared to a perfect sphere light probe, which leads to
under-sampled lighting directions. For example, cylindri-
cal objects (Diet Coke can, ring, etc.) tend to sample well
light rays perpendicular to the can while significantly under-
sampling light rays above and below the can. Since we
use VNDF importance sampling which aligns well with our
BRDF’s density lobe, we visualize a “confidence map” as
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Figure 9. Qualitative ablation of the losses we use in our method. Each of our design choices contributes to improvements in pose and

lighting optimization which can be observed qualitatively.

Method Mirror  Shiny  Diffuse
Nvdiffrec [32] 6.99 5.06 3.59
Nvdiffrecmc [ 18] 6.55 4.60 3.84
ALP (Ours) 5.46 3.67 2.80

Table 2. Evaluation on our ALP model acquisition for a Diet Coke
can using our lightbox setup. We compare our acquisition method
to Nvdiffrec [32] and Nvdiffrecmc [18]. We use the same lighting
estimation approach for compared methods and report average
angular error across all test scenes.

Method Mirror  Shiny  Diffuse
Silhouette loss [3] 6.812 4976 3.919
Ours w/o joint optimization 5401 3.726  3.044
Ours w/o pose regularization  5.962  4.180  3.338
Ours w/o light regularization ~ 6.032  3.647  2.954
Ours 5291  3.610 2923

Table 3. Ablation study on our joint pose-lighting optimization.
We compare to a baseline that uses a silhouette loss and a Chamfer
loss [3], and variants of our approach. We show angular errors
averaged on all test scenes.

Observed
normals

ALP image

Normal Sphere
map normal map

Confident regions in the
environment map

Figure 10. Visualization of sampling directions for a diet Coke can.
See the text in 4.3 for a full description of these visualizations.

normalized sampling frequency. We show this confidence
map in Figure 10 for a representative ALP (i.e., Diet Coke).
This demonstrates that the visible surface of a Coke can from
a single view only under-samples lighting directions from
the top and the bottom.

In our supplementary material, we further show a con-

trolled qualitative analysis of ALPs with different reflectance
or shapes to demonstrate that our approach is tolerant to in-
significant reflectance and shape variations.

Discussion. Our method shows strong promise for recover-
ing scene lighting from a single image containing an ALP.
One exciting potential application is improved image editing
for in-the-wild images; however, to enable this for any im-
age, we would either need to increase the number of ALPs
or explore methods that enable us to dynamically edit one of
the collected measurements (geometry or material). Another
limitation is that we assume our input is an HDR image.
However, we note that recent work has sought to convert
LDR images to HDR [22,25], and HDR images have become
more ubiquitous since many commercial mobile phones now
support HDR capture.

5. Conclusion

In this paper, we introduced the use of accidental light
probes to estimate environmental lighting from single im-
ages. We did this by first scanning common 3D objects
and reconstructing their reflective properties. We then used
differentiable rendering with a physically-based model to
recover the unknown object pose and environment lighting
when the object was placed (or naturally occurred) in an
image. We created a new dataset of materials and geome-
try for several common, shiny, curved objects along with
images showing these in a variety of indoor and outdoor
environments. We demonstrate that our approach strongly
outperforms previous approaches in realism and fidelity.
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