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Abstract

Recovering lighting in a scene from a single image is
a fundamental problem in computer vision. While a mir-
ror ball light probe can capture omnidirectional lighting,
light probes are generally unavailable in everyday images.
In this work, we study recovering lighting from accidental
light probes (ALPs)—common, shiny objects like Coke cans,
which often accidentally appear in daily scenes. We propose
a physically-based approach to model ALPs and estimate
lighting from their appearances in single images. The main
idea is to model the appearance of ALPs by photogram-
metrically principled shading and to invert this process via
differentiable rendering to recover incidental illumination.
We demonstrate that we can put an ALP into a scene to allow
high-fidelity lighting estimation. Our model can also recover
lighting for existing images that happen to contain an ALP*.
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1. Introduction

Traditionally, scene lighting has been captured through
the use of light probes, typically a chromium mirror ball;
their shape (perfect sphere) and material (perfect mirror)
allow for a perfect measurement of all light that intersects
the probe. Unfortunately, perfect light probes rarely appear
in everyday photos, and it is unusual for people to carry
them around to place in scenes. Fortunately, many everyday
objects share the desired properties of light probes: Coke
cans, rings, and thermos bottles are shiny (high reflectance)
and curved (have a variety of surface normals). These ob-
jects can reveal a significant amount of information about
the scene lighting, and can be seen as imperfect “accidental”
light probes (e.g., the Diet Pepsi in Figure 1). Unlike perfect
light probes, they can easily be found in casual photos or
acquired and placed in a scene. In this paper, we explore us-
ing such everyday, shiny, curved objects as Accidental Light
Probes (ALPs) to estimate lighting from a single image.
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Figure 1. (Left) From an image that has an accidental light probe
(a Diet Pepsi can), we insert a virtual object (a Diet Coke can)
with estimated lighting using the accidental light probe (Middle),
and using estimated lighting from a recent state-of-the-art lighting
estimation method [49] (Right). Note how our method better re-
lights the inserted can to produce an appearance consistent with the
environment (e.g., the highlight reflection and overall intensity).

In general, recovering scene illumination from a single
view is fundamental for many computer vision applications
such as virtual object insertion [9], relighting [46], and pho-
torealistic data augmentation [51]. Yet, it remains an open
problem primarily due to its highly ill-posed nature. Images
are formed through a complex interaction between geometry,
material, and lighting [21], and without precise prior knowl-
edge of a scene’s geometry or materials, lighting estimation
is extremely under-constrained. For example, scenes that
consist primarily of matte materials reveal little information
about lighting, since diffuse surfaces behave like low-pass
filters on lighting during the shading process [38], eliminat-
ing high-frequency lighting information. To compensate for
the missing information, the computer vision community has
explored using deep learning to extract data-driven priors for
lighting estimation [14,44]. However, these methods gener-
ally do not leverage physical measurements to address these
ambiguities, yet physical measurements can offer substantial
benefits in such an ill-posed setting.

For images with ALPs, we propose a physically-based
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Figure 9. Qualitative ablation of the losses we use in our method. Each of our design choices contributes to improvements in pose and

lighting optimization which can be observed qualitatively.

Method Mirror  Shiny  Diffuse
Nvdiffrec [32] 6.99 5.06 3.59
Nvdiffrecmc [ 18] 6.55 4.60 3.84
ALP (Ours) 5.46 3.67 2.80

Table 2. Evaluation on our ALP model acquisition for a Diet Coke
can using our lightbox setup. We compare our acquisition method
to Nvdiffrec [32] and Nvdiffrecmc [18]. We use the same lighting
estimation approach for compared methods and report average
angular error across all test scenes.

Method Diffuse

Silhouette loss [3] 6.812 4976 3.919
Ours w/o joint optimization 5401 3.726  3.044
Ours w/o pose regularization  5.962  4.180  3.338
Ours w/o light regularization ~ 6.032  3.647  2.954
Ours 5291  3.610 2923

Mirror ~ Shiny

Table 3. Ablation study on our joint pose-lighting optimization.
We compare to a baseline that uses a silhouette loss and a Chamfer
loss [3], and variants of our approach. We show angular errors
averaged on all test scenes.
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Figure 10. Visualization of sampling directions for a diet Coke can.
See the text in 4.3 for a full description of these visualizations.

normalized sampling frequency. We show this confidence
map in Figure 10 for a representative ALP (i.e., Diet Coke).
This demonstrates that the visible surface of a Coke can from
a single view only under-samples lighting directions from
the top and the bottom.

In our supplementary material, we further show a con-

trolled qualitative analysis of ALPs with different reflectance
or shapes to demonstrate that our approach is tolerant to in-
significant reflectance and shape variations.

Discussion. Our method shows strong promise for recover-
ing scene lighting from a single image containing an ALP.
One exciting potential application is improved image editing
for in-the-wild images; however, to enable this for any im-
age, we would either need to increase the number of ALPs
or explore methods that enable us to dynamically edit one of
the collected measurements (geometry or material). Another
limitation is that we assume our input is an HDR image.
However, we note that recent work has sought to convert
LDR images to HDR [22,25], and HDR images have become
more ubiquitous since many commercial mobile phones now
support HDR capture.

5. Conclusion

In this paper, we introduced the use of accidental light
probes to estimate environmental lighting from single im-
ages. We did this by first scanning common 3D objects
and reconstructing their reflective properties. We then used
differentiable rendering with a physically-based model to
recover the unknown object pose and environment lighting
when the object was placed (or naturally occurred) in an
image. We created a new dataset of materials and geome-
try for several common, shiny, curved objects along with
images showing these in a variety of indoor and outdoor
environments. We demonstrate that our approach strongly
outperforms previous approaches in realism and fidelity.
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