
Tree-Structured Shading Decomposition

Chen Geng* Hong-Xing Yu* Sharon Zhang Maneesh Agrawala Jiajun Wu

Stanford University

Multiply

Highlight

Highlight

Screen

Multiply

Multiply

 Diffuse

 Diffuse

Our Model Our Model

Albedo

Albedo

(b) Reconstructed Shade Tree

(a) Input

Screen Screen

Multiply

Highlight

 Diffuse Albedo

Environment

Screen
Screen

Screen

Multiply

(c) Shade Tree Reuse (d) Editing

Diffuse

Environment

Execute Apply

Our ModelOur Model

Execute Apply

Highlight

Albedo

Figure 1. Decomposing shading into a tree-structured representation. (a) Our method enables the decomposition of given shading into a
(b) shade tree. (c) This representation can be reused to generate new shade trees and (d) edit the shading of objects.

Abstract

We study inferring a tree-structured representation from
a single image for object shading. Prior work typically uses
the parametric or measured representation to model shad-
ing, which is neither interpretable nor easily editable. We
propose using the shade tree representation, which combines
basic shading nodes and compositing methods to factor-
ize object surface shading. The shade tree representation
enables novice users who are unfamiliar with the physical
shading process to edit object shading in an efficient and in-
tuitive manner. A main challenge in inferring the shade tree
is that the inference problem involves both the discrete tree
structure and the continuous parameters of the tree nodes.
We propose a hybrid approach to address this issue. We in-
troduce an auto-regressive inference model to generate a
rough estimation of the tree structure and node parameters,
and then we fine-tune the inferred shade tree through an
optimization algorithm. We show experiments on synthetic
images, captured reflectance, real images, and non-realistic

∗Equal contribution.

vector drawings, allowing downstream applications such as
material editing, vectorized shading, and relighting. Project
website: https://chen-geng.com/inv-shade-trees.

1. Introduction

Analyzing the shading process in images is fundamental
to computer vision and graphics. In particular, the shad-
ing process models how the appearances of surfaces are
generated from an object’s material properties and lighting
conditions. Traditional methods formulate it as the prob-
lem of intrinsic decomposition, which expresses the shading
as the product of reflectance and albedo [2, 13]. However,
this representation is limited in applicability as it assumes
a Lambertian surface. Another popular line of works on
inverse rendering aims at reconstructing analytical represen-
tations [35, 39, 42, 58, 59] or measured representations [30]
for materials and lighting. Yet, such physical representations
are often difficult to interpret in human perception and not
user-friendly for image manipulation tasks.

The choice of shading representation in inverse graphics

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

488

(a) Input (c) Vectorized Shading(b) Material Editing (d) Vectorization Layers (e) Object Relighting 1 (f) Object Relighting 2

Figure 2. Illustration of downstream applications using the shade tree representation extracted from a single image. For object relighting in
(e) and (f), insets show the changed lighting condition.

is important in that it affects what downstream tasks can
be accomplished with that representation. The Shade tree
model is a popular representation for shading in the for-
ward rendering community [7]. One important application
of this representation is that it models how vector graphics
are shaded [38]. Due to its tree structure, this representation
is highly interpretable and easily editable. Thus, it is a wor-
thy and interesting task to recover such representation from
visual observations.

In this work, we study recovering the shade tree repre-
sentation from a single image. We define our shade tree
as a binary tree that contains predefined base nodes (like
“highlight” and “albedo”) and operations (like “screen mode”
and “mix”). Fig. 1 shows examples of our extracted shade
trees and subsequently edited materials produced from these
extracted trees. In particular, we focus on decomposing the
“shading” of objects. The input shading can be considered
as spherical reflectance maps or “MatCaps” obtained from
existing pipeline [46, 51].

Despite its desirable high interpretability and editability,
inferring such a structured representation from a single im-
age has inherent challenges. First, a shade tree contains both
continuous parameters for leaf nodes as well as a discrete
tree structure, making it difficult to optimize directly. Second,
different combinations of base nodes and operations can lead
to equivalent structures, introducing additional ambiguities
for deterministic inference methods. To infer both discrete
structure and continuous parameters, we propose a novel two-
stage approach to iteratively decompose an input observation
into a shade tree. In the first stage, we use an auto-regressive
model to recursively decompose nodes to generate an initial
tree structure. Then, we perform sub-structure searching and
parameter optimization to fine-tune the tree representation.
To deal with the structural ambiguity, we propose a multiple
sampling strategy to allow non-deterministic inference that
accounts for the multi-modal distribution of plausible shade
trees.

Our extensive experiments show the effectiveness of the
proposed approach in decomposing the shading of objects
using the shade tree representation. Further, we apply our ap-
proach to real shadings and non-realistic vector drawings and
demonstrate applications on real images. We demonstrate
various downstream tasks in Fig. 2.

In summary, our contributions are three-fold. First, we

formulate the problem of inferring shade trees from a single
image, aiming at understanding the shading of objects with
an interpretable representation. Second, we design a novel
hybrid approach, integrating an amortized-inference pipeline
and an optimization-based solver. Third, we conduct exten-
sive experiments to show the effectiveness of our method
and demonstrate potential applications of our method.

2. Related Work

Shade Tree Representation. The history of using shade
trees as a rendering representation in computer graphics can
be dated back to the 1980s. Cook et al. [7] first proposed
this representation in 1984, and subsequent use this repre-
sentation to model the shading of vector graphics [38]. 3D
software like Blender [6] uses node graphs, a representation
similar to shade trees.

Few pieces of literature study the problem of inverting
such structures. Both Favreau et al. [10] and Richardt et
al. [47] present algorithms to decompose vector graphics
into gradient layers, but they do not organize them into tree
structures. Lawrence et al. [30] study the problem of invert-
ing the parameter of leaf nodes given some fixed shade tree
structure. However, our work focuses not only on predicting
the parameter of leaf nodes but also on reconstructing the
structure of the shade tree.

Shade Trees v.s. Intrinsic Decomposition / BRDFs. Our ap-
proach is also related to intrinsic decomposition and inverse
rendering.

Intrinsic decomposition methods seek to decompose im-
ages into albedo and reflectance in pixel space without fur-
ther structures [2, 12, 25, 34, 36, 48]. The shading structure
recovered in this work is flexible, rather than predefined rules
(albedo × reflectance), differing from common intrinsic de-
composition tasks.

Traditional inverse rendering methods aim at recovering
material, geometry, and lighting from images [1,3,18,26,33,
39, 42, 58, 59], using predefined analytical material models
such as the Disney BRDF [4]. Compared to the parametric
BRDFs, the shade tree focuses on a different level of ab-
straction. While BRDFs model an element of shading, i.e.,
reflectance properties of materials, it does not model other
shading elements such as lighting. Our shade tree models the
outcome of shading, i.e., the appearance. This involves both

489

material and lighting for real images, as well as other artistic
effects in cartoon shadings. Inverting the shade tree represen-
tation features advantages including flexibility in shading,
interpretability to common users, and high editability.

Inverse Procedural Graphics. Procedural graphics gener-
ates content algorithmically rather than manually. Textures,
biological phenomena, and regular structures like buildings
and cities are typically generated with procedural models,
with a compact set of variables to direct the generation. In-
verse procedural graphics seeks to infer parameters or gram-
mar for procedural models describing such structures. This
is often done within specific domains, including urban de-
sign and layouts [11, 41, 54, 55], L-systems [16, 61], tex-
tures [23, 28, 29, 31], forestry [43, 52], CSG (Constructive
Solid Geometry) trees [9, 27, 49, 57], and scene representa-
tion [32, 37, 40, 56].

Large material datasets [8] coupled with differentiable
material graph frameworks [21,50] have made deep learning
methods applicable to procedural material modeling. Given
a dataset of training images, Shi et al. [50] can select an
initial graph structure and optimize its parameters to match
a target material appearance. Alternatively, Hu et al. [22]
directly utilizes the latent space of a generative model to
transfer material appearance. In a similar vein, Henzler et
al. [19] embed images into a latent space before generating
BRDF parameters. Our method is different from them in that
we simultaneously reconstruct the discrete tree structure and
the continuous parameters, allowing better adaptation ability
to unseen real images. Generative models have also been
applied for creating material representations [17, 60]. More
recently, Guerrero et al. [15] also shows that transformers
are suitable for modeling and generating material graphs,
which contain many long-range dependencies. In contrast to
generation, we focus on reconstruction from an image.

3. Method
We now introduce our tree decomposition pipeline. First,

we introduce the context-free grammar used to represent our
shade trees (Sec 3.1). Next, we cover the recursive amortized
inference used to produce an initial tree structure (Sec 3.3).
Finally, we explain an additional optimization-based fine-
tuning step for decomposing any remaining nodes that were
not reliably decomposed by the recursive inference (Sec 3.4).

3.1. Grammar Specification

Definition of Shade Trees. A shade tree is a tree-structured
representation for shading. The leaf nodes of the tree struc-
ture are all basic shading nodes that cannot be further decom-
posed. The interior nodes are formulated using a specified
composition method taking child nodes as input. By exe-
cuting the tree structure in a bottom-up manner, we can get
complex shading effects.

Tree → Mix(Tree, Tree, Mask)
Tree → Multiply(Tree, Tree)
Tree → Screen(Tree, Tree)
Tree → Albedo(Color=Var)
Tree → DiffRef(Lobe=Var, Ambient=Var)
Tree → EnvRef
Tree → Highlight(Lobe=Var, Sharpness=Var)
EnvRef → a environment map
Var → free continuous variable
Mask → a map with 0 and 1

Table 1. Context-free grammar for the DSL representing shade tree
structure. More details of the DSL can be found in the supplement.

Definition of Base Nodes. We define four basic shading
nodes. Highlight nodes represent a single highlight re-
flected on the surface. DiffRef nodes represent the diffuse
reflective component of the material. Albedo nodes are ho-
mogeneous nodes with only one uniform color for shading
to represent a basic albedo shading. Finally, EnvRef nodes
model the specular shading reflecting the surrounding envi-
ronment.
Definition of Composition Methods. We define three com-
positing methods to construct parent shading nodes from
child nodes. The Multiply operator performs a multiplica-
tion of its two child nodes. The Screen operation performs
a screen mode composition. The Mix operation takes a mask
as input and uses the mask to assign different shading nodes
to different regions. For multiply, the shading of parent
node p is defined as:

p = cl · cr, (1)

where cl and cr denote the left child and the right child,
respectively. The screen operation is given by:

p = 1− (1− cl) · (1− cr). (2)

And the mix operation is defined as:

p = m · cl + (1−m) · cr, (3)

where m denotes a learnable mask.
Context-Free Grammar. The definition of the shade tree
can be formalized to a domain-specific language (DSL) rep-
resented by a context-free grammar [20] G, as shown in
Table 1.

3.2. Overview of Algorithm

The proposed algorithm contains two stages. We show
an overview in Fig. 3. In the first stage, we aim to recover
the initial structure of the shade tree using a recursive amor-
tized inference decomposition module (Fig. 3 top). In the

490

Input

 (Section 3.3)
Initial Structure
 Prediction

?
Unknown Substructure

Substructure Searching

Combine and Optim.

Final Structure

(Section 3.4)

Figure 3. The proposed framework for reconstructing shade tree representation. Our method takes in a shading, and then first does an
initial structure prediction in a top-down recursive manner. It is allowed that there is still some unknown substructure from this initial guess.
Then the roots of those unknown structures are fed into a substructure searching module, where we perform searching over all possible
substructures and optimize the leaf parameter to decide whether this structure is appropriate. After all the substructures are decided, we
merge them into the initially predicted tree and get the final structure. We perform an overall optimization on this structure to get the final
parameter of the leaf nodes.

second stage, we decompose the nodes that are not success-
fully solved in the first stage and recover the parameters of
leaf nodes using an evolution-based optimization algorithm
(Fig. 3 bottom).

The motivation for this two-stage design for decompo-
sition is that we wish to take advantage of the distinct be-
haviors of these two types of algorithms. The first stage is
top-down amortized inference and performs the decompo-
sition layer-by-layer. This approach learns prior knowledge
from large-scale training data. Thus, the decomposition is
fast but occasionally fails in some corner cases due to the
lack of enough capacity to generalize, which is seen as a
common problem for learning-based methods.

Thus, we further introduce the second stage, which em-
ploys a classical program synthesis that enumerates all pos-
sible structures and does optimization to find the correct
solution. Such an enumeration is slower than learning-based
methods, yet it has more capacity to generalize to corner
cases. By combining these two approaches, our algorithm is
effective and efficient in tackling the task.

3.3. Recursive Amortized Inference

In the first part, we do the decomposition in a top-down
manner recursively and then procedurally generate the entire
tree. We maintain a pool of nodes and record their type and
linkage for each inference procedure. Initially, there is only
one node I0 in the pool, serving as the root node of the whole
tree. At each step, we consider node I which is neither a leaf
nor decomposed. We pass it into our shared single-step com-
ponent prediction module M and obtain {Il, Ir} = M(I),
where Il and Ir denote the left and right child nodes, respec-

tively. The design of M will be discussed in this section later.
The child nodes Il and Ir are then linked to the parent node
I with new tree edges. All three nodes are then fed into a
CNN f which gives

p = f(I, Il, Ir), (4)

where p is a probability distribution over all compositing
operations in our grammar. The operation with the highest
probability is selected as the type of the parent node. A
separate CNN g that also takes the three nodes as input
predicts

Ω = g(I, Il, Ir), (5)

where Ω is the parameter value of the selected operation.
After predicting the operation and corresponding pa-

rameters, we then get the reconstructed parent node Î by
choosing the correct operation from operation set S =
{mix, screen, multiply} and then get the single-step re-
construction error Lrecon:

Lrecon = ||I− Î||2, (6)

where Î = Sargmax(p)(Il, Ir,Ω). (7)

To determine whether the predicted child node should be
further decomposed, we pass each of Il, Ir into a child com-
ponent prediction neural network h and get the probability
q of its type. If the child node is a leaf node, then we mark it
as solved in the node pool, so it is not further decomposed.
The previously described procedure ends whenever no more
nodes can be decomposed.

We then describe how the single-step component predic-
tion module M is implemented. The design of M follows
two principles:

491

Parent
 Input

Predicted
 Child

Encoder

Child Type
Pred. Net.

Latent

 Auto-regressive
Prediction for 1st Child

Latent of
 1st child

 Auto-regressive
Prediction for 2nd Child

Latent of
2nd child

Decoder Operation Prediction
 Network

Screen

Leaf Node Parameter(Albedo Color)

Internal Node

Optimizer

Recursive Decomposition

Figure 4. Illustration of recursive inference module used in the initial structure prediction. The structure prediction is performed in a
top-down recursive manner. In each step, we feed the current parent node into the module, and it is first encoded to a discrete latent code
using VQ-VAE. Then the latent code is fed into the first auto-regressive module to predict the latent code for the first child. After that, the
latent of the first child and the parent are both fed into the second auto-regressive module to get latent of the second child. The latent codes
are decoded into images for children nodes. Afterward, the parent node and the children nodes are fed into the operation prediction network
to predict the operation of this step. For each of the predicted children, we use a child-type prediction network to know whether it is a leaf
node. If it is not a leaf node, it will be further decomposed. Otherwise, it will be optimized to get its parametric representation.

1. The prediction should not be deterministic, i.e., it
should allow different kinds of output for this mod-
ule. This is because many different structures of trees
may describe the same tree.

2. The prediction of the second child should at least de-
pend on the prediction of the first child and the parent
node, and the prediction of the first child should depend
on the parent node.

Inspired by these two principles, we design a two-step
conditional auto-regressive module for prediction.

Auto-regressive Inference. Auto-regressive inference en-
tails a discretized feature space. Thus, we adopt the Vector
Quantized Variational Autoencoder (VQ-VAE) [45] as our
encoder architecture. The latent feature v of a shading I is
given by: v = E(I), where E denotes the VQ-VAE encoder
(Fig. 4 left top). Then we further train two conditional Pixel-
SNAIL [5] models to auto-regressively generate two child
nodes (Fig. 4 middle top). Specifically, for the generation
of the first child node, we sample the discrete latent repre-
sentation vl from the distribution pl(v) represented using
the auto-regressive model, conditioned on the latent code of
the parent node. Similarly, the latent code vr of the second
child is sampled from the distributions pr(v,vl) encoded by
the auto-regressive model, conditioned on the previous child
and the parent node. Finally, the child images are decoded

using the decoder D to generate the image representation of
child nodes.

We build a synthetic dataset to train the previously men-
tioned modules. Please refer to the supplementary material
for the detail of the training.
Multiple Sampling. For each auto-regressive inference, we
sample T times to make sure that we make the best decom-
position decision in each step. We define a criterion to select
from multiple samples. First, we need the reconstruction
result that combines two child nodes to be as similar as pos-
sible to the parent node, which can be indicated from the
Lrecon as described in Eq. 7.

Further, we wish the derived tree to be as compact as
possible by avoiding useless decomposition. We define Lsim
that represents the similarity between the parent node and
the child nodes, which is defined as

Lsim = − log(||I− Il||2 + ||I− Ir||2). (8)

We also define Lblank and Lwhite to avoid one child being
wholly blank or white, which will result in useless decompo-
sition:

Lblank = − log(||E(Il)− 1||2 + ||E(Ir)− 1||2), (9)
Lwhite = − log(||E(Il)||2 + ||E(Ir)||2). (10)

The final criterion Lselect is defined as

Lselect = Lrecon + αLsim + βLblank + γLwhite, (11)

492

Realistic Toon DRM (real-captured)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

CNN 26.50 0.967 0.066 27.18 0.959 0.052 14.41 0.857 0.164
LSTM 17.80 0.909 0.154 24.86 0.964 0.067 19.67 0.882 0.205
Transformer 18.82 0.930 0.153 26.73 0.971 0.042 17.89 0.876 0.186
Ours 30.89 0.974 0.052 30.08 0.972 0.032 25.47 0.927 0.150

Table 2. Quantitative comparison. Our method greatly surpasses other baselines in all three datasets, benefiting from our design to
accurately predict structure and parameters. “Realistic” and “Toon” are two synthetic datasets and “DRM” is a real-captured dataset.

where α, β, γ are hyper-parameters.
Early-stop Strategy. The amortized inference module may
not successfully decompose every node, which is why we
designed the second stage to further decompose those nodes
and finetune the whole tree structure. We send a node to the
second stage if minT (Lselect) < τ , where τ is a threshold.

3.4. Optimization-based Finetuning

For the nodes that cannot be decomposed in the first stage,
we search over all possible sub-structures of these nodes and
use an optimizer BasinCMA [24] to find the optimal leaf
parameters. The optimization target can be defined as

min
λ

||Rs(λ)− I||2 + ||FVGG(Rs(λ))− FVGG(I)||2, (12)

where λ denotes all trainable parameters, Rs represents the
renderer under the searched structure s and FVGG represents
a pretrained VGG network.

The search over all possible substructures is performed in
the order of depth. If the target loss is already smaller than a
predefined threshold ϕ, we stop searching and assume it to
be the final substructure.
Obtaining parametric representation for leaf nodes. After
finalizing the shade tree’s structure, we optimize each leaf
node using the same target as described in Eq. 12 to get the
parametric representation for each leaf node.
Optimizing on the whole tree. Finally, we perform opti-
mization on the parameter of all leaf nodes using the follow-
ing target:

min
µ

||RS(µ)−I0||2+||FVGG(RS(µ))−FVGG(I0)||2, (13)

where S stands for the finalized structure of the whole tree
and µ = [λ0, λ1, · · · , λN].

4. Experiments
In this section, we first show our results on shade tree

decomposition on a diverse set of example including realis-
tic synthetic images, cartoon-style images, and real images.
Then we introduce a visual shading editing analogy experi-
ment which is designed to quantitatively evaluate the decom-
position of reconstructed structures. Finally we analyze our
method by ablation study results.

4.1. Results on Decomposition

To evaluate the effectiveness of the proposed method, we
conduct a quantitative evaluation of our methods and other
baselines on several datasets.

Datasets. We evaluate our method on both synthetic and
real-captured datasets.

For the synthetic dataset, we generate two styles of
datasets, “Realistic” and “Toon”, to show the robustness
and broad applicability of the proposed method. For the
“Realistic” dataset, all the base nodes are represented in a
photo-realistic way, imitating how the shading in real life
behaves. For the “Toon” dataset, we take inspiration from
non-photorealistic shading [14] and generate many cartoon-
style shading nodes. After generating all base nodes and
operation nodes, they are split into two sets, one for training
sets and the other for the generation of test sets. Afterward,
we apply a recursive algorithm to generate the training and
test sets using the specified context-free grammar. The details
of the dataset can be found in the supplementary material.

Besides the synthetic datasets, we use the real-captured
dataset “DRM” collected by Rematas et al. [46] to evaluate
the real-world generalizability of the proposed method.

Baselines. No previous work has tackled a task setting sim-
ilar to ours. Therefore, we drew inspiration from previous
research on grammar decomposition and adapted three com-
petitive baseline frameworks that are widely used in the
neural program synthesis and structure induction community
for our purpose.

Our CNN baseline, which utilizes a similar architecture to
that in Rim-net [44], employs an encoder-decoder structure
to perform single-step decomposition recursively, similar to
the first stage of our approach. We also introduced an LSTM
baseline, similar to Shape Programs [53], which first uses
an encoder to get the latent representation of images and
then uses LSTM to predict a sequence of tokens that are
subsequently compiled to the shade tree structure. Similarly,
our Transformer baseline also predicts the sequence of
tokens but adapts a GPT architecture, following Matformer
[15]. Please note that although the baselines share a similar
backbone design with previous literature, they differ due to
the different problem settings. The supplementary material

493

Ours

Cannot be further decomposed

Screen

Screen

Screen Multiply

Multiply

Mix

CNN

Screen

Screen
Screen

LSTM TransformerInput

Screen

Screen

Screen Multiply

Multiply

Mix

Endless Decomposition

Screen

Screen

Screen

Screen

Screen

ScreenMultiply

Multiply

Mix

Screen

Screen

Cannot be further decomposed

Screen

Screen

Screen

Screen

Screen

Multiply

Multiply

Mix

Screen

Screen

Multiply

Screen

Multiply

Mix

Figure 5. Qualitative comparison of different methods on reconstruction. [Top row] shows a sample from Realistic dataset, [Mid row]
shows a sample from Toon dataset, and [Bottom row] shows a real test sample from the DRM dataset [46].

contains further details and implementation of the baselines.

Results. We show the results of this experiment in Fig. 5
and Table 2. Our method has the best-reconstructed tree
structure among all three methods. The LSTM baseline can
predict similar structures to ours; however, it performs poorly
in predicting the parameter of leaf nodes, resulting in bad
reconstruction results. The CNN baseline predicts in a top-
down manner; however, it suffers from ambiguity in the
grammar. Thus, it cannot learn a correct mapping between
layers, resulting in nodes that cannot be further decomposed
or endlessly decomposed in a trivial way.

Our method can also be applied to the real-world dataset
“DRM” with satisfactory performance, which can be wit-
nessed from the third column of Table 2 and the third row
of Fig. 5. The result shows the generalizability and the real-
world applicability of the proposed approach.

We also perform decomposition using our model on some
in-the-wild internet photos, shown in Fig. 6.

4.2. Visual Shading Editing Analogy

To allow quantitatively evaluating the reconstructed tree
structure, we design a task called “Visual Shading Editing

PSNR↑ SSIM↑ LPIPS↓

CNN 4.79 0.143 0.608
LSTM 4.47 0.113 0.547

Transformer 5.02 0.186 0.547
Ours 32.17 0.913 0.078

Table 3. Quantitative comparison of different methods on the
task visual shading editing analogy. Our method performs the
best among all three methods by understanding the tree structure
well. The other two methods cannot deal with this task because of
their poor decomposition.

Analogy” which reflects how well the decomposition is. As
illustrated in Fig. 7, given an input pair of shading, the algo-
rithm should give a hybrid shade tree composed of different
subtrees from different nodes, according to the rule shown
in the example shading ball pair.

We generate a dataset containing different types of shad-
ing editing to evaluate the performance of different methods
on this task. We adopt the same baseline setting in Section
4.1, introducing the CNN, LSTM, and Transformer base-
lines. Then we use such methods to decompose given pairs

494

[Lopez-Moreno et al. 2013] [Richardt et al. 2014]

(a) (b) (c)

(d) (e)

Figure 6. Decomposition of in-the-wild real images using our method. Our method can not only work on synthetic data but can also be
widely used in the decomposition of in-the-wild shading. The shadings in (a, b, c) are collected from the Internet. In (d), we show that our
method can do decomposition of the shadings from Lopez-Moreno et al. [38]. In (e), we compare our method with Richardt et al. [47]. We
first extract shading from the vector drawing, and then we use our method to do decomposition to the shading sphere.

Multiply Multiply Multiply

Screen Screen Screen

Substitute

?
(a) Example

(b) Analogy

Figure 7. Illustration of “Visual Shading Editing Analogy” that
allows quantitative evaluation. Given an example of shading
editing, we wish the same operation could be applied to novel test
pairs. For instance, in this case, the example shows us that the
edited shading is formed by replacing the albedo node with the
albedo node from the second shading ball. Thus, this operation
should also be applied to the pair in the bottom row, resulting in a
shading ball with a blue base color and an upward highlight.

to get their tree-structured representation. The details of the
algorithm for making such a visual analogy are described in
the supplementary material.

Table 3 shows the results. Our method surpasses other
methods greatly due to a better understanding of the semantic
meaning of tree structure.

4.3. Ablation Studies

To verify the influence of the special design in the pro-
posed pipeline, we do ablation studies on the following three
components: multiple sampling, second-stage optimization,
and overall optimization, because they are typically non-
trivial in previous literature.

Influence of Multiple Sampling From Fig. 8, it can be ob-
served that multiple sampling improves the result during the
1st stage inference because it can produce several solutions
and use the metrics to choose the best one. Without doing
this, our model may directly predict a “reasonable” one, but
not the “best” one.

Influence of Optimization The second stage of optimization
help us to decompose those nodes that are hard to deal with
using only the amortized-inference module. By removing
such a component, our method cannot decompose the bottom
node shown in Fig. 8 and thus gives worse results than the

495

Base + Multiple Sampling

+ Second Stage Optimization + Overall Optimization

Input

Figure 8. Ablation of components. “Base” denotes our method
with only 1 sample during inference, “+Multiple Sampling” de-
notes only using the 1st stage with multiple sampling. “+Second
Stage” denotes using both the first stage and the second stage of
the proposed method but does not perform the overall optimization.
“+Overall Optimization” denotes the full proposed method.

(a) Real-Captured Image (b) Extracted Shading (c) Reconstructed Tree

 Extract
MatCap

 Using
Our Model

Screen

Multiply Highlight

Albedo Di�

Figure 9. Results on a real image of a non-sphere object. Al-
though the main focus of this work is decomposing the reflectance
spheres, it can be applied to non-sphere geometry as well if we use
existing tools to first extract sphere reflectance from images first.

full method.

Influence of Overall Optimization By introducing the over-
all optimization at the end of the second stage, our method
can further finetune the structure, like giving a better envi-
ronment reflection.

4.4. Application on Real-world Images

Our work focuses on the decomposition of MatCaps or
Reflectance Maps [51]. However, the work can be applied to
real-world images by using existing tools to first extract the
sphere reflectance. In Fig. 9, we show an example of using
the proposed method together with an existing tool ZBrush
to decompose the shading of a real-world capture.

5. Conclusion
We have presented a novel method that can effectively

and efficiently decompose shading into a tree-structured
representation, which enables understanding and editing of

the shading in an interpretable way. The first stage of the
proposed method uses a pretrained auto-regressive model
to predict the structure and parameters of the tree structure.
The second stage of the pipeline leverages the parametric
representation of each base node and structure searching
to find the optimal structure for all nodes that cannot be
effectively decomposed in the first stage. The combination
of two stages leads to our state-of-the-art performance on
several datasets compared to the baselines.

Acknowledgments. This work was in part supported by
Ford, NSF RI #2211258, AFOSR YIP FA9550-23-1-0127,
the Toyota Research Institute (TRI), the Stanford Institute
for Human-Centered AI (HAI), Amazon, and the Brown
Institute for Media Innovation.

References
[1] Jonathan T Barron and Jitendra Malik. Shape, illumination,

and reflectance from shading. IEEE transactions on pattern
analysis and machine intelligence, 37(8):1670–1687, 2014. 2

[2] Sean Bell, Kavita Bala, and Noah Snavely. Intrinsic images in
the wild. ACM Transactions on Graphics (TOG), 33(4):1–12,
2014. 1, 2

[3] Mark Boss, Raphael Braun, Varun Jampani, Jonathan T Bar-
ron, Ce Liu, and Hendrik Lensch. Nerd: Neural reflectance
decomposition from image collections. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 12684–12694, 2021. 2

[4] Brent Burley and Walt Disney Animation Studios. Physically-
based shading at disney. In Acm Siggraph, volume 2012,
pages 1–7. vol. 2012, 2012. 2

[5] Xi Chen, Nikhil Mishra, Mostafa Rohaninejad, and Pieter
Abbeel. Pixelsnail: An improved autoregressive generative
model. In International Conference on Machine Learning,
pages 864–872. PMLR, 2018. 5

[6] Blender Online Community. Blender - a 3D modelling and
rendering package. Blender Foundation, Stichting Blender
Foundation, Amsterdam, 2018. 2

[7] Robert L Cook. Shade trees. In Proceedings of the 11th
annual conference on Computer graphics and interactive
techniques, pages 223–231, 1984. 2

[8] Valentin Deschaintre, Miika Aittala, Frédo Durand, George
Drettakis, and Adrien Bousseau. Single-image svbrdf capture
with a rendering-aware deep network. ACM Transactions on
Graphics (SIGGRAPH Conference Proceedings), 37(128):15,
aug 2018. 3

[9] Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg,
Adriana Schulz, Daniela Rus, Armando Solar-Lezama, and
Wojciech Matusik. Inversecsg: Automatic conversion of 3d
models to csg trees. ACM Trans. Graph., 37(6), dec 2018. 3

[10] Jean-Dominique Favreau, Florent Lafarge, and Adrien
Bousseau. Photo2clipart: Image abstraction and vectorization
using layered linear gradients. ACM Trans. Graph., 36(6),
nov 2017. 2

496

[11] Mathieu Gaillard, Vojtěch Krs, Giorgio Gori, Radomı́r Měch,
and Bedrich Benes. Automatic differentiable procedural mod-
eling. Computer Graphics Forum, 41(2):289–307, 2022. 3

[12] Elena Garces, Adolfo Munoz, Jorge Lopez-Moreno, and
Diego Gutierrez. Intrinsic images by clustering. In Com-
puter graphics forum, volume 31, pages 1415–1424. Wiley
Online Library, 2012. 2

[13] Elena Garces, Carlos Rodriguez-Pardo, Dan Casas, and Jorge
Lopez-Moreno. A survey on intrinsic images: Delving deep
into lambert and beyond. International Journal of Computer
Vision, 130(3):836–868, 2022. 1

[14] Bruce Gooch and Amy Gooch. Non-photorealistic rendering.
AK Peters/CRC Press, 2001. 6

[15] Paul Guerrero, Milos Hasan, Kalyan Sunkavalli, Radomir
Mech, Tamy Boubekeur, and Niloy Mitra. Matformer: A gen-
erative model for procedural materials. ACM Trans. Graph.,
41(4), 2022. 3, 6

[16] Jianwei Guo, Haiyong Jiang, Bedrich Benes, Oliver Deussen,
Xiaopeng Zhang, Dani Lischinski, and Hui Huang. Inverse
procedural modeling of branching structures by inferring l-
systems. ACM Trans. Graph., 39(5), jun 2020. 3

[17] Yu Guo, Cameron Smith, Miloš Hašan, Kalyan Sunkavalli,
and Shuang Zhao. Materialgan: Reflectance capture using
a generative svbrdf model. ACM Trans. Graph., 39(6), nov
2020. 3

[18] Jon Hasselgren, Nikolai Hofmann, and Jacob Munkberg.
Shape, light & material decomposition from images us-
ing monte carlo rendering and denoising. arXiv preprint
arXiv:2206.03380, 2022. 2

[19] Philipp Henzler, Valentin Deschaintre, Niloy J Mitra, and
Tobias Ritschel. Generative modelling of brdf textures from
flash images. ACM Trans Graph (Proc. SIGGRAPH Asia),
40(6), 2021. 3

[20] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman.
Introduction to automata theory, languages, and computation.
Acm Sigact News, 32(1):60–65, 2001. 3

[21] Yiwei Hu, Paul Guerrero, Milos Hasan, Holly Rushmeier,
and Valentin Deschaintre. Node graph optimization using
differentiable proxies. In ACM SIGGRAPH 2022 Conference
Proceedings, SIGGRAPH ’22, New York, NY, USA, 2022.
Association for Computing Machinery. 3

[22] Yiwei Hu, Miloš Hašan, Paul Guerrero, Holly Rushmeier,
and Valentin Deschaintre. Controlling material appearance by
examples. Computer Graphics Forum, 41(4):117–128, 2022.
3

[23] Yiwei Hu, Chengan He, Valentin Deschaintre, Julie Dorsey,
and Holly Rushmeier. An inverse procedural modeling
pipeline for svbrdf maps. ACM Trans. Graph., 41(2), jan
2022. 3

[24] Minyoung Huh, Richard Zhang, Jun-Yan Zhu, Sylvain Paris,
and Aaron Hertzmann. Transforming and projecting images
into class-conditional generative networks. In European Con-
ference on Computer Vision, pages 17–34. Springer, 2020.
6

[25] Michael Janner, Jiajun Wu, Tejas D Kulkarni, Ilker Yildirim,
and Josh Tenenbaum. Self-supervised intrinsic image decom-
position. Advances in neural information processing systems,
30, 2017. 2

[26] Haian Jin, Isabella Liu, Peijia Xu, Xiaoshuai Zhang, Songfang
Han, Sai Bi, Xiaowei Zhou, Zexiang Xu, and Hao Su. Tensoir:
Tensorial inverse rendering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2023. 2

[27] R. Kenny Jones, Homer Walke, and Daniel Ritchie. Plad:
Learning to infer shape programs with pseudo-labels and ap-
proximate distributions. The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2022. 3

[28] Ares Lagae, Sylvain Lefebvre, George Drettakis, and Philip
Dutré. Procedural noise using sparse gabor convolution. In
ACM SIGGRAPH 2009 Papers, SIGGRAPH ’09, New York,
NY, USA, 2009. Association for Computing Machinery. 3

[29] Ares Lagae, Peter Vangorp, Toon Lenaerts, and Philip Dutré.
Procedural isotropic stochastic textures by example. Comput-
ers & Graphics, 34(4):312–321, 2010. 3

[30] Jason Lawrence, Aner Ben-Artzi, Christopher DeCoro, Wo-
jciech Matusik, Hanspeter Pfister, Ravi Ramamoorthi, and
Szymon Rusinkiewicz. Inverse shade trees for non-parametric
material representation and editing. ACM Transactions on
Graphics (TOG), 25(3):735–745, 2006. 1, 2

[31] Laurent Lefebvre and Pierre Poulin. Analysis and synthesis
of structural textures. In Graphics Interface, volume 2000,
pages 77–86, 2000. 3

[32] Yikai Li, Jiayuan Mao, Xiuming Zhang, William T. Freeman,
Joshua B. Tenenbaum, and Jiajun Wu. Perspective Plane
Program Induction from a Single Image. In Conference on
Computer Vision and Pattern Recognition, 2020. 3

[33] Zhengqin Li, Mohammad Shafiei, Ravi Ramamoorthi, Kalyan
Sunkavalli, and Manmohan Chandraker. Inverse rendering for
complex indoor scenes: Shape, spatially-varying lighting and
svbrdf from a single image. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 2475–2484, 2020. 2

[34] Zhengqi Li and Noah Snavely. Learning intrinsic image
decomposition from watching the world. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition.
IEEE, jun 2018. 2

[35] Zhengqin Li, Zexiang Xu, Ravi Ramamoorthi, Kalyan
Sunkavalli, and Manmohan Chandraker. Learning to recon-
struct shape and spatially-varying reflectance from a single
image. ACM Transactions on Graphics (TOG), 37(6):1–11,
2018. 1

[36] Yunfei Liu, Yu Li, Shaodi You, and Feng Lu. Unsupervised
learning for intrinsic image decomposition from a single im-
age. In 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, jun 2020. 2

[37] Yunchao Liu, Jiajun Wu, Zheng Wu, Daniel Ritchie,
William T. Freeman, and Joshua B. Tenenbaum. Learning to
describe scenes with programs. In International Conference
on Learning Representations, 2019. 3

[38] Jorge Lopez-Moreno, Popov Stefan, Adrien Bousseau, Ma-
neesh Agrawala, and George Drettakis. Depicting stylized
materials with vector shade trees. ACM Transactions on
Graphics, 32(4), 2013. 2, 8

[39] Fujun Luan, Shuang Zhao, Kavita Bala, and Zhao Dong. Uni-
fied shape and svbrdf recovery using differentiable monte

497

carlo rendering. In Computer Graphics Forum, volume 40,
pages 101–113. Wiley Online Library, 2021. 1, 2

[40] Jiayuan Mao, Xiuming Zhang, Yikai Li, William T. Freeman,
Joshua B. Tenenbaum, and Jiajun Wu. Program-Guided Image
Manipulators. In International Conference on Computer
Vision, 2019. 3

[41] Andelo Martinovic and Luc Van Gool. Bayesian grammar
learning for inverse procedural modeling. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2013. 3

[42] Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao,
Wenzheng Chen, Alex Evans, Thomas Müller, and Sanja Fi-
dler. Extracting triangular 3d models, materials, and lighting
from images. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 8280–8290,
2022. 1, 2

[43] Till Niese, Sören Pirk, Matthias Albrecht, Bedrich Benes,
and Oliver Deussen. Procedural urban forestry. ACM Trans.
Graph., 41(2), mar 2022. 3

[44] Chengjie Niu, Manyi Li, Kai Xu, and Hao Zhang. Rim-net:
Recursive implicit fields for unsupervised learning of hier-
archical shape structures. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 11779–11788, 2022. 6

[45] Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generat-
ing diverse high-fidelity images with vq-vae-2. Advances in
neural information processing systems, 32, 2019. 5

[46] Konstantinos Rematas, Tobias Ritschel, Mario Fritz, Efstra-
tios Gavves, and Tinne Tuytelaars. Deep reflectance maps. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4508–4516, 2016. 2, 6, 7

[47] C. Richardt, J. Lopez-Moreno, A. Bousseau, M. Agrawala,
and G. Drettakis. Vectorising bitmaps into semi-transparent
gradient layers. In Proceedings of the 25th Eurographics
Symposium on Rendering, EGSR ’14, page 11–19, Goslar,
DEU, 2014. Eurographics Association. 2, 8

[48] Carsten Rother, Martin Kiefel, Lumin Zhang, Bernhard
Schölkopf, and Peter Gehler. Recovering intrinsic images
with a global sparsity prior on reflectance. Advances in neu-
ral information processing systems, 24, 2011. 2

[49] Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kaloger-
akis, and Subhransu Maji. Csgnet: Neural shape parser for
constructive solid geometry. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.
3

[50] Liang Shi, Beichen Li, Miloš Hašan, Kalyan Sunkavalli, Tamy
Boubekeur, Radomir Mech, and Wojciech Matusik. Match:
Differentiable material graphs for procedural material capture.
ACM Trans. Graph., 39(6):1–15, Dec. 2020. 3

[51] Peter-Pike J Sloan et al. The lit sphere: A model for capturing
npr shading from art. Graphics Interface, 2001. 2, 9

[52] O. Stava, S. Pirk, J. Kratt, B. Chen, R. Měch, O. Deussen, and
B. Benes. Inverse procedural modelling of trees. Computer
Graphics Forum, 33(6):118–131, 2014. 3

[53] Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis,
William T Freeman, Joshua B Tenenbaum, and Jiajun Wu.
Learning to infer and execute 3d shape programs. arXiv
preprint arXiv:1901.02875, 2019. 6

[54] Carlos A. Vanegas, Ignacio Garcia-Dorado, Daniel G. Aliaga,
Bedrich Benes, and Paul Waddell. Inverse design of urban
procedural models. ACM Trans. Graph., 31(6), nov 2012. 3

[55] Fuzhang Wu, Dong-Ming Yan, Weiming Dong, Xiaopeng
Zhang, and Peter Wonka. Inverse procedural modeling of
facade layouts. CoRR, abs/1308.0419, 2013. 3

[56] Jiajun Wu, Joshua B Tenenbaum, and Pushmeet Kohli. Neural
scene de-rendering. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017. 3

[57] Q. Wu, K. Xu, and J. Wang. Constructing 3d csg models from
3d raw point clouds. Computer Graphics Forum, 37(5):221–
232, 2018. 3

[58] Kai Zhang, Fujun Luan, Zhengqi Li, and Noah Snavely. Iron:
Inverse rendering by optimizing neural sdfs and materials
from photometric images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 5565–5574, 2022. 1, 2

[59] Kai Zhang, Fujun Luan, Qianqian Wang, Kavita Bala, and
Noah Snavely. Physg: Inverse rendering with spherical gaus-
sians for physics-based material editing and relighting. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 5453–5462, 2021. 1,
2

[60] Xilong Zhou, Miloš Hašan, Valentin Deschaintre, Paul Guer-
rero, Kalyan Sunkavalli, and Nima Kalantari. Tilegen:
Tileable, controllable material generation and capture, 2022.
3

[61] O. Št’ava, B. Beneš, R. Měch, D. G. Aliaga, and P. Krištof.
Inverse procedural modeling by automatic generation of l-
systems. Computer Graphics Forum, 29(2):665–674, 2010.
3

498

