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Abstract

In this supplementary document, we first provide implementation details on un-
supervised discovery of Object Radiance Fields in Section 1. We then describe
details on datasets and baseline architectures in Section 2. We further show ad-
ditional results in Section 3. All mathematical and algorithmic notations are the
same as those in the main manuscript. In the supplementary video, we provide
an overview of our paper.

1 Implementation
In this section we provide implementation details of our unsupervised discovery of Object Radiance
Fields. Each following subsection corresponds to that in the main manuscript.

1.1 Object-centric Encoding

Convolutional feature extraction. Our convolutional encoder is a simple U-net. We show our
encoder architecture in Table 1 and Table 2. In our experiments we assume fixed camera focal length.
In this case, the ray direction does not provide additional information to the pixel coordinates, and
thus we drop the ray direction input and only feed pixel coordinates as input channels in addition to
the input RGB image. Each of the XY pixel coordinates is normalized to [−1, 1] in both directions,
leading to 4 additional channels.

Background-aware slot attention. We show a pseudo code of background-aware slot attention in
Algorithm 1. We encourage readers to compare it with the original slot attention algorithm [4] for
better understanding. For CLEVR-567 dataset we set D = 40 and K = 8. For Room-Chair and
Room-Diverse we set D = 64 and K = 5.

1.2 Compositional Neural Rendering

Coordinate space. We represent foreground objects in the viewer space. Regarding background,
since it is difficult to estimate full geometry from a single view (e.g., the geometry behind the camera),
we assume fixed background geometry and represent it in the world space. Incorporating multi-
view images as inference input might solve this problem [7], but we leave it as future exploration.
This design also encourages the disentanglement between foreground objects and background by
preventing the background slot from decoding foreground objects, because the positional information
provided in the encoder is represented in viewer space. To further encourage the disentanglement,
we add a locality constraint during early training. Considering that “foreground” objects should be
largely visible in sight, we set a foreground box and enforce that every foreground-querying point
outside the box has zero density. The foreground box is defined such that its projection in image
space can engage roughly 90% pixels.

Decoder architecture. We show our foreground decoder architecture in Figure 1.
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Layer name Input shape Output shape Stride Note

Conv1 64×64×7 64×64×64 2 Skip to Conv6

Conv2 64×64×64 32×32×64 2 Skip to Conv5

Conv3 32×32×64 16×16×64 2
Conv4 16×16×64 16×16×64 1

Upsample 16×16×64 32×32×64 Bilinear upsampling
Conv5 32×32×128 32×32×64 1

Upsample 32×32×64 64×64×64 Bilinear upsampling
Conv6 64×64×128 64×64×64 1

Table 1: Encoder architecture for the CLEVR-567 dataset and the Room-Chair dataset. All convolutional kernel
sizes are 3×3. All activation functions for convolutional layers are ReLU.

Layer name Input shape Output shape Stride Note

Conv0 128×128×7 128×128×64 1
Conv1 128×128×64 64×64×64 2 Skip to Conv6

Conv2 64×64×64 32×32×64 2 Skip to Conv5

Conv3 32×32×64 16×16×64 2
Conv4 16×16×64 16×16×64 1

Upsample 16×16×64 32×32×64 Bilinear upsampling
Conv5 32×32×128 32×32×64 1

Upsample 32×32×64 64×64×64 Bilinear upsampling
Conv6 64×64×128 64×64×64 1

Table 2: Encoder architecture for the Room-Diverse dataset. All convolutional kernel sizes are 3×3. All
activation functions for convolutional layers are ReLU.

1.3 Model Learning
Loss functions. We set λpercept = 0.006, λadv = 0.01, λR = 10. For perceptual loss, we implement
the feature extractor p by using the output of the 4-th convolutional block in a VGG16 [6] pretrained
on ImageNet. For the adversarial discriminator, we follow the architecture of StyleGAN2 [3]
with slight modification such that the maximum channel number is 128. We also use the lazy R1
regularization [3]. We use Adam optimizer for discriminator with learning rate 0.001, β1 = 0 and
β2 = 0.9. The adversarial loss is incorporated after 100k iterations. Since shape uncertainty only
appears in the Room-Diverse dataset, we only impose the adversarial loss on the Room-Diverse
dataset but not on CLEVR-567 or Room-Chair. Both perceptual loss and adversarial loss are added
after the first 100k iterations.

Coarse-to-fine progressive training. For coarse training, we bilinearly downsample supervision
images to 64×64. The coarse training lasts for 600K iterations. For fine training, we randomly crop
64×64 patches from 128×128 images. The fine training lasts for 600K iterations. Our model is
trained on a single Nvidia RTX 3090 GPU for about 6 days. For all networks except discriminator,
we use Adam optimizer with learning rate 0.0003, β1 = 0.9 and β2 = 0.999. Learning rate is
exponentially decreased by half for every 200K iterations until after 600K iterations. We also adopt
the learning rate warm-up from the slot attention paper [4] for the first 1K iterations. We initialize
decoder networks with Xavier’s initialization. In each batch, we input one image and neurally render
4 images for supervision. We render each pixel with 64 samples.

2 Experiments
In this section we provide further details on experiment settings.

2.1 Data
CLEVR-567. In the CLEVR-567 dataset, each object’s shape is randomly chosen from three
geometric primitives (i.e., cylinder, cube and sphere). The color is randomly chosen from
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Algorithm 1: Background-aware slot attention module.

Input: inputs ∈ RN×D, slotb ∼ N b ∈ R1×D, slotsf ∼ N f ∈ RK×D

Layer Params: k, qb, qf , vb, vf : linear mappings, GRUb, GRUf , MLPb, MLPf , LayerNorm (x5)
inputs = LayerNorm(inputs)
for t = 1, · · · , T

slot prevb = slotb, slots prevf = slotsf

slotb = LayerNorm(slotb), slotsf = LayerNorm(slotsf)

attn = Softmax

(
1√
D
k(inputs) ·

[
qb(slotb)
qf (slotsf )

]T
, dim=‘slot’

)
attnb = attn[:, 0], attnf = attn[:, 1:end]

updatesb= WeightedMean(weights=attnb, values=vb(inputs))

updatesf= WeightedMean(weights=attnf , values=vf(inputs))

slotb = GRUb(state=slot prevb, inputs=updatesb)

slotsf = GRUf(state=slots prevf , inputs=updatesf)

slotb+ = MLPb(LayerNorm(slotb)), slotsf+ = MLPf(LayerNorm(slotsf))

return slotb, slotsf
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Figure 1: Illustration for foreground decoder architecture. We follow the architecture in NeRF [5] but with
fewer parameters to decrease space demand. We set the highest positional embedding frequency to 5, so that the
positional embedding input dimension is 5× 2× 3 + 3 = 33. The background decoder is slightly different in
that it does not have the second last layer and third last layer. Density σ is activated by ReLU. Since estimating
specularity from a single image is intrinsically ambiguous, we assume Lambertian surfaces and do not use the
ray direction as input.

{red, blue, purple, gray, cyan, yellow, green, brown}. There are two possible sizes for each
object. When rendering images, we use the same camera intrinsic as original CLEVR dataset [2]. We
do not use the visibility check due to our 360 degree multi-view setting, so we increase elevation angle
by π/15 to increase the chance of object visibility. Rendering setting is the same for all datasets.

Room-Chair. For the object shape we use a chair model* from ShapeNet [1]. We use the same
material and colors as CLEVR-567.

Room-Diverse. All object shapes are randomly chosen from 1,200 ShapeNet chairs. For each
shape, we normalize it into a unit cube according to vertex coordinates. We also use 8 colors
{red, blue, purple, gray, cyan, yellow, green, black} with diffuse material. Since shape uncer-
tainty only appears in this dataset, we only impose the adversarial loss on this dataset.

*Model ID: 3ffd794e5100258483bc207d8a5912e3

3



2.2 Baseline Architectures

Slot attention. We use the encoder-decoder architecture in the slot attention paper [4] used for
object discovery experiments on the CLEVR dataset. Basically it has 6 convolutional layers for
encoder and 6 convolution-transpose layers for decoder. The number of channels for each layer is 64.
All models are trained on 128×128 images.

NeRF-AE. We follow NeRF implementation without view direction as input and set the highest
frequency to 5. The encoder is similar to ours in Figure 2, but the basic number of channels is
increased from 64 to 256 (and thus the number of channels of inputs to Conv5 and Conv6 is 512).
The number of slot is set to 1.

3 Additional Results
In this section we show additional qualitative results for our experiments in the main manuscript.
We show additional examples for 3D scene segmentation in Figure 2 and Figure 3, for novel view
synthesis in Figure 4, Figure 5 and Figure 6, for scene manipulation in Figure 7 and Figure 8, for
evaluating losses in Figure 9, for generalization to challenging spatial arrangement in Figure 10 (note
that in the packed-CLEVR-11 dataset we only use a single size for higher object visibility), and for
generalization to unseen object appearance in Figure 11.
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Figure 2: Additional qualitative results for 3D segmentation on Room-Chair dataset.
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Figure 3: Additional qualitative results for 3D segmentation on Room-Diverse dataset.
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Figure 4: Additional qualitative results for novel view synthesis on CLEVR-567 dataset.
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Figure 5: Additional qualitative results for novel view synthesis on Room-Chair dataset.
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Figure 6: Additional qualitative results for novel view synthesis on Room-Diverse dataset.
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Figure 7: Additional qualitative results for scene manipulation.
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Figure 8: Additional qualitative results for scene manipulation.
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Figure 9: Qualitative results for loss evaluations. Using both perceptual loss and adversarial loss improves image
quality.
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Figure 10: Qualitative results for generalization to unseen spatial arrangement.

13



Ground truth 
segmentation

Slot Attention uORF (ours)Ground truth 
Color image

N/A

N/A

Novel 
view

Input 
view

Novel 
view

Input 
view

N/A
Novel 
view

Input 
view

uORF (oracle)

Figure 11: Qualitative results for generalization to unseen combination of color and shape.
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